XGBoost算法可以给预测模型带来能力的提升。当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势:
- 标准GBDT 的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。
- 实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。
- XGBoost可以实现并行处理,相比GBDT有了速度的飞跃。
- 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?其实 XGBoost并行指代的是更低粒度的并行,是在特征层面的并行。
- XGBoost 也支持Hadoop实现。
- XGBoost 允许用户定义自定义优化目标和评价标准
- 它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。
- XGBoost内置处理缺失值的规则。
- 用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。
- 当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。
- XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。
- 这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,因此会保留这两个分裂。
- XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。
- 而GBM使用网格搜索,只能检测有限个值。
- XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。
- sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。
XGBoost的作者把所有的参数分成了三类:
- 通用参数:宏观函数控制。
- Booster参数:控制每一步的booster(tree/regression)。
- 学习目标参数:控制训练目标的表现。
- 除了以上参数还可能有其它参数,在命令行中使用
gbliner:线性模型
- 当这个参数值为1时,静默模式开启,不会输出任何信息。
- 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。
- 这个参数用来进行多线程控制,应当输入系统的核数。
- 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
还有两个参数,XGBoost会自动设置,目前你不用管它。
4)num_feature
boosting过程中用到的特征维数,设置为特征个数。XGBoost会自动设置,不需要手工设置。
尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。
- 和GBM中的 learning rate 参数类似。
- 通过减少每一步的权重,可以提高模型的鲁棒性。
- 典型值为0.01-0.2。
- 决定最小叶子节点样本权重和。
- 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。
- 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。
- 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。
- 和GBM中的参数相同,这个值为树的最大深度。
- 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。
- 需要使用CV函数来进行调优。
- 典型值:3-10
4)max_leaf_nodes
- 树上最大的节点或叶子的数量。
- 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2n2个叶子。
- 如果定义了这个参数,GBM会忽略max_depth参数。
- 在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。
- 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。
- 模型在默认情况下,对于一个节点的划分只有在其loss function 得到结果大于0的情况下才进行,而gamma 给定了所需的最低loss function的值
- gamma值使得算法更conservation,且其值依赖于loss function ,在模型中应该进行调参
- 这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。
- 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。
- 这个参数一般用不到,但是你可以挖掘出来它更多的用处。
- 和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。
- 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。
- 典型值:0.5-1
- 和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。
- 典型值:0.5-1
- 用来控制树的每一级的每一次分裂,对列数的采样的占比。
- 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。
- 权重的L2正则化项。(和Ridge regression类似)。
- 这个参数是用来控制XGBoost的正则化部分的。
- 权重的L1正则化项。(和Lasso regression类似)。
- 可以应用在很高维度的情况下,使得算法的速度更快。
- 在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
- 大于0的取值可以处理类别不平衡的情况。帮助模型更快收敛。
另外:Parameter for Linear Booster
- L2 正则的惩罚系数
- 用于处理XGBoost的正则化部分。通常不使用,但可以用来降低过拟合
- L1 正则的惩罚系数
- 当数据维度极高时可以使用,使得算法运行更快。
- 在偏置上的L2正则。
(在L1上没有偏置项的正则,因为L1时偏置不重要)
- 在偏置上的L2正则。
这个参数用来控制理想的优化目标和每一步结果的度量方法。
- 定义学习任务及相应的学习目标,可选的目标函数如下:
- 在poisson回归中,max_delta_step的缺省值为0.7。(used to safeguard optimization)
- 对于有效数据的度量方法。
- 对于回归问题,默认值是rmse,对于分类问题,默认值是error。
- logloss 负对数似然函数值
- error 二分类错误率(阈值为0.5)
- merror 多分类错误率
- mlogloss 多分类logloss损失函数
- auc 曲线下面积
- 随机数的种子
- 设置它可以复现随机数据的结果,也可以用于调整参数
它使用sklearn形式的参数命名方式,对应关系如下:
3、alpha -> reg_alpha
另外:Console Parameters
- 是否为输入创建二进制的缓存文件,缓存文件可以加速计算。
- train:训练模型
- 输出预测的边界,而不是转换后的概率
你肯定在疑惑为啥咱们没有介绍和GBM中的n_estimators
类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为num_boosting_rounds
XGBoost Guide 的一些部分是我强烈推荐大家阅读的,通过它可以对代码和参数有一个更好的了解:
XGBoost Parameters (official guide)
XGBoost Demo Codes (xgboost GitHub repository)
Python API Reference (official guide)
我们从Data Hackathon 3.x AV版的hackathon中获得数据集,和GBM 介绍文章中是一样的。更多的细节可以参考competition page
数据集可以从这里下载。我已经对这些数据进行了一些处理:
City
变量,因为类别太多,所以删掉了一些类别。DOB
变量换算成年龄,并删除了一些数据。EMI_Loan_Submitted_Missing
EMI_Loan_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的EMI_Loan_Submitted
变量。EmployerName
变量,因为类别太多,所以删掉了一些类别。- 因为
Existing_EMI
变量只有111个值缺失,所以缺失值补充为中位数0。 Interest_Rate_Missing
Interest_Rate
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Interest_Rate
变量。- 删除了
Lead_Creation_Date
,从直觉上这个特征就对最终结果没什么帮助。 Loan_Amount_Applied, Loan_Tenure_Applied
Loan_Amount_Submitted_Missing
Loan_Amount_Submitted
变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Loan_Amount_Submitted
变量。Loan_Tenure_Submitted_Missing
Loan_Tenure_Submitted
Loan_Tenure_Submitted
- 删除了
LoggedIn
Salary_Account
Processing_Fee_Missing
Processing_Fee
Processing_Fee
Source
前两位不变,其它分成不同的类别。- 进行了离散化和独热编码(一位有效编码)。
如果你有原始数据,可以从资源库里面下载data_preparation
的Ipython notebook
首先,import必要的库,然后加载数据。
注意我import了两种XGBoost:
- xgb - 直接引用xgboost。接下来会用到其中的“cv”函数。
- XGBClassifier - 是xgboost的sklearn包。这个包允许我们像GBM一样使用Grid Search 和并行处理。
在向下进行之前,我们先定义一个函数,它可以帮助我们建立XGBoost models 并进行交叉验证。好消息是你可以直接用下面的函数,以后再自己的models中也可以使用它。
这个函数和GBM中使用的有些许不同。注意xgboost的sklearn包没有“feature_importance”这个量度,但是get_fscore()函数有相同的功能。
我们会使用和GBM中相似的方法。需要进行如下步骤:
-
选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。
-
对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在确定一棵树的过程中,我们可以选择不同的参数,待会儿我会举例说明。
-
xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。
-
降低学习速率,确定理想参数。
咱们一起详细地一步步进行这些操作。
为了确定boosting
参数,我们要先给其它参数一个初始值。咱们先按如下方法取值:
1、max_depth
2、min_child_weight
3、gamma
4、subsample, colsample_bytree
5、scale_pos_weight
注意哦,上面这些参数的值只是一个初始的估计值,后继需要调优。这里把学习速率就设成默认的0.1。然后用xgboost中的cv函数来确定最佳的决策树数量。前文中的函数可以完成这个工作。
简单调参方法: 首先调整max_depth ,通常max_depth 这个参数与其他参数关系不大,初始值设置为10,找到一个最好的误差值,然后就可以调整参数与这个误差值进行对比。比如调整到8,如果此时最好的误差变高了,那么下次就调整到12;如果调整到12,误差值比10 的低,那么下次可以尝试调整到15. 在找到了最优的max_depth之后,可以开始调整subsample,初始值设置为1,然后调整到0.8 如果误差值变高,下次就调整到0.9,如果还是变高,就保持为1.0 接着开始调整min_child_weight , 方法与上面同理 再接着调整colsample_bytree 经过上面的调整,已经得到了一组参数,这时调整eta 到0.05,然后让程序运行来得到一个最佳的num_round,(在 误差值开始上升趋势的时候为最佳 )
参考:https://blog.csdn.net/wzmsltw/article/details/50994481
https://blog.csdn.net/han_xiaoyang/article/details/52665396
原文:https://www.cnblogs.com/Allen-rg/p/9266605.html