Python : Speeding up my Runge-Kutta integration code challenge

拟墨画扇 提交于 2019-12-01 14:10:59

You are not comparing the same things. To see at what points odeint actually evaluates the ODE function, put a print t statement in (of course while not timing it). odeint and generally methods with adaptive time steps produce a sparse list of integration samples and interpolate the desired output from them.

You would have to use an error estimator for the RK4 method and based on that replicate this adaptive scheme.


And of course, interpreted python code using vector objects will never be competitive with the compiled FORTRAN code of lsoda called from odeint using simple arrays during its execution.


An example for using RK4 in an adaptive step size scheme with interpolation:

 def RK4Step(f, x, y, h, k1):
    k2=f(x+0.5*h, y+0.5*h*k1)
    k3=f(x+0.5*h, y+0.5*h*k2)
    k4=f(x+    h, y+    h*k3)
    return (k1+2*(k2+k3)+k4)/6.0

def RK4TwoStep(f, x, y, h, k1):
    step1 = RK4Step(f, x , y , 0.5*h, k1        )
    x1, y1 = x+0.5*h, y+0.5*h*step1;
    step2 = RK4Step(f, x1, y1, 0.5*h, f(x1, y1) )
    return (step1+step2)/2

def RK4odeint(fin,times,y0, tol):
    # numpy-ify the inputs
    f = lambda t,y : np.array(fin(t,y))
    y0 = np.array(y0)
    # allocate output structure
    yout = np.array([y0]*len(times));
    # in consequence, yout[0] = y0;
    # initialize integrator variables
    h = times[1]-times[0];
    hmax = abs(times[-1]-times[0]);

    # last and current point of the numerical integration
    ycurr = ylast = qcurr = qlast = y0; 
    tcurr = tlast = times[0];
    fcurr = flast = f(tcurr, ycurr);
    totalerr = 0.0
    totalvar = 0.0
    for i, t in enumerate(times[1:]):
        # remember that t == t[i+1], result goes to yout[i+1]
        while (t-tcurr)*h>0:
            # advance the integration                
            k1, k2 = RK4Step(f,tcurr,ycurr,h, fcurr), RK4TwoStep(f,tcurr,ycurr,h, fcurr);
            # RK4 is of fourth order, that is,
            # k1 = (y(x+h)-y(x))/h + C*h^4
            # k2 = (y(x+h)-y(x))/h + C*h^4/16
            # Using the double step k2 gives  
            # C*h^4/16 = (k2-k1)/15 as local error density
            # change h to match the global relative error density tol
            # use |k2| as scale for the absolute error
            # |k1-k2|/15*hfac^4 = tol*|k2|, h <- h*hfac

            scale = max(abs(k2))
            steperr = max(abs(k1-k2))/2
            # compute the ideal step size factor and sanitize the result to prevent ridiculous changes
            hfac = (  tol*scale / ( 1e-16+steperr)  )**0.25
            hfac = min(10, max(0.01, hfac) )

            # repeat the step if there is a significant step size correction
            if ( abs(h*hfac)<hmax and (0.6 > hfac or hfac > 3 )):
                # recompute with new step size
                h *= hfac;
                k2 = RK4TwoStep(f, tcurr, ycurr, h, fcurr) ;
            # update and cycle the integration points
            ylast = ycurr; ycurr = ycurr + h*k2;
            tlast = tcurr; tcurr += h;
            flast = fcurr; fcurr = f(tcurr, ycurr);
            # cubic Bezier control points
            qlast = ylast + (tcurr-tlast)/3*flast;
            qcurr = ycurr - (tcurr-tlast)/3*fcurr;

            totalvar += h*scale;
            totalerr = (1+h*scale)*totalerr + h*steperr;
            reportstr = "internal step to t=%12.8f \t" % tcurr;

        #now tlast <= t <= tcurr, can interpolate the value for yout[i+1] using the cubic Bezier formula
        s = (t - tlast)/(tcurr - tlast);
        yout[i+1] = (1-s)**2*((1-s)*ylast + 3*s*qlast) + s**2*(3*(1-s)*qcurr + s*ycurr)

    return np.array(yout)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!