Smooth cone normals

谁都会走 提交于 2019-12-01 13:27:28

At any point on the surface of a cone except the apex, there are two obvious kinds of tangent vectors: one tangent to the cross-sectional circle, or one up the slope. If you express the surface as a parametric equation with two parameters, you can get these tangent vectors as the two partial derivatives. Take the cross product of the tangents, and you get a normal vector. The order of the product determines whether the normal points inward or outward. Of course, the bottom face must be handled separately.

datenwolf

In addition to the answer by JWWalker I'd like to point out, that a vertex is a whole tuple of vector, that among other things includes position and normal. So if you have different normals at a single position, you got there different and multiple vertices.

In the case of the cone this is important, because the tip of the cone is not one single vertex, but a whole set of them (one tip vertex for each triangle the cone's coat. And then for the base circle you got at each position two vertices, the one for the triangle to the tip, and one for the base surface.

Both the tip and the edge are discontinuities and hence call for a be drawn using separate vertices.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!