整除分块的证明

谁都会走 提交于 2019-12-01 06:10:20

对于任意一个块的左端点 \(i \quad (i\leq n)\) ,需要找到块的右端点 \(j \quad (i\leq j\leq n)\) 使得
\[ \left \lfloor\frac{n}{i}\right\rfloor = \left\lfloor\frac{n}{j} \right \rfloor \]
若能求出 \(j\),那么下一个块的 \(i = j + 1\)

\(\large \left \lfloor \frac{n}{i} \right \rfloor = k\),有 \(\large i \times k + p = n\)。其中 \(\large p = n \mod i\)

\(\large \frac{n}{j} = k\) 表示为 $ \large \frac{n}{i + d_{max}} = k$。对于 $ \large \frac{n}{i + d} = k$,同上有 \((i+d) \times k + p'=n\)。有
\[ (i+d) \times k + p' = \large i \times k + p = n \]

\[ p' = i \times k + p - i \times k - d \times k = p - d \times k \]

因为 \(p' \ge 0\)\(d\) 为整数,所以有 \(p - d \times k \ge 0\),进而推出 \(d_{max} = \left \lfloor \frac{p}{k} \right \rfloor\)

推式子
\[ j = i + d_{max} = i + \left \lfloor \frac{p}{k} \right \rfloor \]

\[ = i+ \left \lfloor \frac{n \mod i}{\left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor = \left \lfloor i +\frac{n \mod i}{\left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor \]

\[ = \left \lfloor i+ \frac{n - \left \lfloor \frac{n}{i} \right \rfloor \times i}{ \left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor \]

\[ = \left \lfloor \frac{\left \lfloor \frac{n}{i}\right \rfloor \times i}{\left \lfloor \frac{n}{i} \right \rfloor }+ \frac{n - \left \lfloor \frac{n}{i} \right \rfloor \times i}{ \left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor \]

\[ = \left \lfloor \frac{n - \left \lfloor \frac{n}{i} \right \rfloor \times i + \left \lfloor \frac{n}{i} \right \rfloor \times i}{ \left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor \]

\[ = \left \lfloor \frac{n}{ \left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor \]

所以 \(j = \left \lfloor \frac{n}{ \left \lfloor \frac{n}{i} \right \rfloor} \right \rfloor\)

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!