【问题】给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1: 给定二叉树 [3,9,20,null,null,15,7] 3 / \ 9 20 / \ 15 7 返回 true 。
【思路】
对于平衡树来说,其要求是左右子树的深度之差不能大于1,我们使用一个简单的递归思路来解决,当然也可以使用非递归,不过比较复杂!
由于我们需要知道左右子树的深度,那么递归的返回值显然是左右子树的深度,但我们整个主函数是返回一个bool, 因此我们将bool变量flag设置为类中的成员变量,通过递归函数对其值进行更新。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool res = true; int check(TreeNode* node){ if(node == nullptr) return 0; int l = 1 + check(node->left); int r = 1 + check(node->right); if(abs(l-r) > 1){ res = false; } return max(l, r); } bool isBalanced(TreeNode* root) { check(root); return res; } };