Making a single function work on lists, ByteStrings and Texts (and perhaps other similar representations)

∥☆過路亽.° 提交于 2019-11-30 13:06:29

Your solution is pretty much what the ListLike package does. There's also the additional package listlike-instances which adds instances for Text and Vector.

After a while I made a solution myself, but I'm not sure if it could be solved in a better way, or if someone already did this in some library.

I created a type-class with TypeFamilies as

class Foldable' t where
    type Element t :: *
    foldlE :: (b -> Element t -> b) -> b -> t -> b
    -- other functions could be copied here from Foldable

and instances:

newtype WrapFoldable f a = WrapFoldable { unwrapFoldable :: f a }
instance (F.Foldable f) => Foldable' (WrapFoldable f a) where
    type Element (WrapFoldable f a) = a
    foldlE f z = F.foldl f z . unwrapFoldable

instance Foldable' B.ByteString where
    type Element B.ByteString = Word8
    foldlE = B.foldl


instance Foldable' T.Text where
    type Element (T.Text) = Char
    foldlE = T.foldl

or even better with FlexibleInstances:

instance (F.Foldable t) => Foldable' (t a) where
    type Element (t a) = a
    foldlE = F.foldl

Now I can write (with FlexibleContexts):

histogram :: (Ord (Element t), Foldable' t) => t -> Histogram (Element t)
histogram = foldlE (flip histogramStep) empty

and use it on Foldables, ByteStrings, Texts etc.

  • Is there another (perhaps simpler) way to do it?
  • Is there some library that addresses this problem (in this way or another)?

You might consider objectifying folds themselves:

{-# LANGUAGE GADTs #-}
import Data.List (foldl', unfoldr)
import qualified Data.ByteString.Lazy as B
import qualified Data.Vector.Unboxed as V
import qualified Data.Text as T
import qualified Data.Map as Map
import Data.Word
type Histogram a = Map.Map a Int

empty :: (Ord a) => Histogram a
empty = Map.empty
histogramStep :: (Ord a) => Histogram a -> a -> Histogram a
histogramStep h k = Map.insertWith (+) k 1 h 

histogram :: Ord b => Fold b (Histogram b)
histogram = Fold histogramStep empty id

histogramT :: T.Text -> Histogram Char
histogramT = foldT histogram
histogramB :: B.ByteString -> Histogram Word8
histogramB = foldB histogram 
histogramL :: Ord b => [b] -> Histogram b
histogramL = foldL histogram

-- helper library
-- see http://squing.blogspot.fr/2008/11/beautiful-folding.html
-- note existential type
data Fold b c where  Fold ::  (a -> b -> a) -> !a -> (a -> c) -> Fold b c
instance Functor (Fold b) where  fmap f (Fold op x g) = Fold op x (f . g)

foldL :: Fold b c -> [b] -> c
foldL (Fold f x c) bs = c $ (foldl' f x bs)

foldV :: V.Unbox b => Fold b c -> V.Vector b -> c
foldV (Fold f x c) bs = c $ (V.foldl' f x bs)

foldT :: Fold Char t -> T.Text -> t
foldT (Fold f x c) t = c $ (T.foldl' f x t)

foldB :: Fold Word8 t -> B.ByteString -> t
foldB (Fold f x c) t = c $ (B.foldl' f x t)


sum_, product_ :: Num a => Fold a a
sum_ = Fold (+) 0 id
product_ = Fold (*) 1 id

length_ :: Fold a Int
length_ = Fold (const . (+1)) 0 id
maximum_ = Fold max 0 id

I found another solution using lens package, which has a detailed type-class hierarchy identifying different kind of data structures. Its approach is similar to the one in applicative's answer - it objectifies folds:

{-# LANGUAGE RankNTypes #-}
import Control.Monad.State
import qualified Data.Foldable as F
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import Data.Word
import qualified Data.ByteString as B
import qualified Data.Text as T

import Control.Lens.Fold
import qualified Data.ByteString.Lens as LBS
import qualified Data.Text.Lens as LT

type Histogram a = Map a Int

empty :: (Ord a) => Histogram a
empty = Map.empty

histogramStep :: (Ord a) => a -> Histogram a -> Histogram a
histogramStep k = Map.insertWith (+) k 1

-- Histogram on anything that can be folded into `a`:

histogram :: (Ord a) => Fold c a -> c -> Histogram a
histogram f = foldlOf f (flip histogramStep) empty

-- Specializations are simple:

histogramF :: (Ord a, F.Foldable t) => t a -> Histogram a
histogramF = histogram folded

histogramBS :: B.ByteString -> Histogram Word8
histogramBS = histogram LBS.bytes

histogramText :: T.Text -> Histogram Char
histogramText = histogram LT.text
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!