Implementation of Goertzel algorithm in C

 ̄綄美尐妖づ 提交于 2019-11-30 06:52:01

If you are saying that the Matlab implementation is good because its results match the result for that frequency of a DFT or FFT of your data, then it's probably because the Matlab implementation is normalizing the results by a scaling factor as is done with the FFT.

Change your code to take this into account and see if it improves your results. Note that I also changed the function and result names to reflect that your goertzel is calculating the magnitude, not the complete complex result, for clarity:

float goertzel_mag(int numSamples,int TARGET_FREQUENCY,int SAMPLING_RATE, float* data)
{
    int     k,i;
    float   floatnumSamples;
    float   omega,sine,cosine,coeff,q0,q1,q2,magnitude,real,imag;

    float   scalingFactor = numSamples / 2.0;

    floatnumSamples = (float) numSamples;
    k = (int) (0.5 + ((floatnumSamples * TARGET_FREQUENCY) / SAMPLING_RATE));
    omega = (2.0 * M_PI * k) / floatnumSamples;
    sine = sin(omega);
    cosine = cos(omega);
    coeff = 2.0 * cosine;
    q0=0;
    q1=0;
    q2=0;

    for(i=0; i<numSamples; i++)
    {
        q0 = coeff * q1 - q2 + data[i];
        q2 = q1;
        q1 = q0;
    }

    // calculate the real and imaginary results
    // scaling appropriately
    real = (q1 - q2 * cosine) / scalingFactor;
    imag = (q2 * sine) / scalingFactor;

    magnitude = sqrtf(real*real + imag*imag);
    return magnitude;
}

Often you can just use the square of the magnitude in your computations, for example for tone detection.

Some excellent examples of Goertzels are in the Asterisk PBX DSP code Asterisk DSP code (dsp.c) and in the spandsp library SPANDSP DSP Library

Consider two input sample wave-forms:

1) a sine wave with amplitude A and frequency W

2) a cosine wave with the same amplitude and frequency A and W

Goertzel algorithm should yield the same results for two mentioned input wave-forms but the provided code results in different return values. I think the code should be revised as follows:

float goertzel_mag(int numSamples,int TARGET_FREQUENCY,int SAMPLING_RATE, float* data)
{
    int     k,i;
    float   floatnumSamples;
    float   omega,sine,cosine,coeff,q0,q1,q2,magnitude,real,imag;

    float   scalingFactor = numSamples / 2.0;

    floatnumSamples = (float) numSamples;
    k = (int) (0.5 + ((floatnumSamples * TARGET_FREQUENCY) / SAMPLING_RATE));
    omega = (2.0 * M_PI * k) / floatnumSamples;
    sine = sin(omega);
    cosine = cos(omega);
    coeff = 2.0 * cosine;
    q0=0;
    q1=0;
    q2=0;

    for(i=0; i<numSamples; i++)
    {
        q2 = q1;
        q1 = q0;
        q0 = coeff * q1 - q2 + data[i];
    }

    // calculate the real and imaginary results
    // scaling appropriately
    real = (q0 - q1 * cosine) / scalingFactor;
    imag = (-q1 * sine) / scalingFactor;

    magnitude = sqrtf(real*real + imag*imag);
    return magnitude;
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!