state of the art result for machine learning problems

冷暖自知 提交于 2019-11-30 03:15:07

https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems

1. Classification

Research Paper Datasets Metric Source Code Year
Dynamic Routing Between Capsules
  • MNIST
  • Test Error: 0.25±0.005
2017
High-Performance Neural Networks for Visual Object Classification
  • NORB
  • Test Error: 2.53 ± 0.40
2011
ShakeDrop regularization
  • CIFAR-10
  • CIFAR-100
  • Test Error: 2.31%
  • Test Error: 12.19%
2017
Aggregated Residual Transformations for Deep Neural Networks
  • CIFAR-10
  • Test Error: 3.58%
2017
Dynamic Routing Between Capsules
  • MultiMNIST
  • Test Error: 5%
2017
Squeeze-and-Excitation Networks
  • ImageNet-1k
  • Top-1 Error 18.68
2017
Aggregated Residual Transformations for Deep Neural Networks
  • ImageNet-1k
  • Top-1 Error: 20.4%
2016

2. Instance Segmentation

Research Paper Datasets Metric Source Code Year
Mask R-CNN
  • COCO
  • Average Precision: 37.1%
2017

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!