I want to use Tensorflow's Dataset API to read TFRecords file of lists of variant length. Here is my code.
def _int64_feature(value):
# value must be a numpy array.
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def main1():
# Write an array to TFrecord.
# a is an array which contains lists of variant length.
a = np.array([[0, 54, 91, 153, 177],
[0, 50, 89, 147, 196],
[0, 38, 79, 157],
[0, 49, 89, 147, 177],
[0, 32, 73, 145]])
writer = tf.python_io.TFRecordWriter('file')
for i in range(a.shape[0]): # i = 0 ~ 4
x_train = a[i]
feature = {'i': _int64_feature(np.array([i])), 'data': _int64_feature(x_train)}
# Create an example protocol buffer
example = tf.train.Example(features=tf.train.Features(feature=feature))
# Serialize to string and write on the file
writer.write(example.SerializeToString())
writer.close()
# Check TFRocord file.
record_iterator = tf.python_io.tf_record_iterator(path='file')
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
i = (example.features.feature['i'].int64_list.value)
data = (example.features.feature['data'].int64_list.value)
#data = np.fromstring(data_string, dtype=np.int64)
print(i, data)
# Use Dataset API to read the TFRecord file.
def _parse_function(example_proto):
keys_to_features = {'i' :tf.FixedLenFeature([], tf.int64),
'data':tf.FixedLenFeature([], tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return parsed_features['i'], parsed_features['data']
ds = tf.data.TFRecordDataset('file')
iterator = ds.map(_parse_function).make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(i.eval())
print(data.eval())
Check TFRecord file
[0] [0, 54, 91, 153, 177]
[1] [0, 50, 89, 147, 196]
[2] [0, 38, 79, 157]
[3] [0, 49, 89, 147, 177]
[4] [0, 32, 73, 145]
But it showed the following error when I tried to use Dataset API to read TFRecord file.
tensorflow.python.framework.errors_impl.InvalidArgumentError: Name: , Key: data, Index: 0. Number of int64 values != expected. Values size: 5 but output shape: []
Thank you.
UPDATE:
I tried to use the following code to read TFRecord with Dataset API, but both of them failed.
def _parse_function(example_proto):
keys_to_features = {'i' :tf.FixedLenFeature([], tf.int64),
'data':tf.VarLenFeature(tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return parsed_features['i'], parsed_features['data']
ds = tf.data.TFRecordDataset('file')
iterator = ds.map(_parse_function).make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(sess.run([i, data]))
or
def _parse_function(example_proto):
keys_to_features = {'i' :tf.VarLenFeature(tf.int64),
'data':tf.VarLenFeature(tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return parsed_features['i'], parsed_features['data']
ds = tf.data.TFRecordDataset('file')
iterator = ds.map(_parse_function).make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(sess.run([i, data]))
And the error:
Traceback (most recent call last): File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/tensor_util.py", line 468, in make_tensor_proto str_values = [compat.as_bytes(x) for x in proto_values] File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/tensor_util.py", line 468, in str_values = [compat.as_bytes(x) for x in proto_values] File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/util/compat.py", line 65, in as_bytes (bytes_or_text,)) TypeError: Expected binary or unicode string, got
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "2tfrecord.py", line 126, in main1() File "2tfrecord.py", line 72, in main1 iterator = ds.map(_parse_function).make_one_shot_iterator() File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 712, in map return MapDataset(self, map_func) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1385, in init self._map_func.add_to_graph(ops.get_default_graph()) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/function.py", line 486, in add_to_graph self._create_definition_if_needed() File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/function.py", line 321, in _create_definition_if_needed self._create_definition_if_needed_impl() File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/function.py", line 338, in _create_definition_if_needed_impl outputs = self._func(*inputs) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1376, in tf_map_func flattened_ret = [ops.convert_to_tensor(t) for t in nest.flatten(ret)] File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1376, in flattened_ret = [ops.convert_to_tensor(t) for t in nest.flatten(ret)] File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 836, in convert_to_tensor as_ref=False) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 926, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/constant_op.py", line 208, in constant value, dtype=dtype, shape=shape, verify_shape=verify_shape)) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/tensor_util.py", line 472, in make_tensor_proto "supported type." % (type(values), values)) TypeError: Failed to convert object of type to Tensor. Contents: SparseTensor(indices=Tensor("ParseSingleExample/Slice_Indices_i:0", shape=(?, 1), dtype=int64), values=Tensor("ParseSingleExample/ParseExample/ParseExample:3", shape=(?,), dtype=int64), dense_shape=Tensor("ParseSingleExample/Squeeze_Shape_i:0", shape=(1,), dtype=int64)). Consider casting elements to a supported type.
Python version: 3.5.2
Tensorflow version: 1.4.1
After hours of searching and trying, I believe the answer emerges. Below is my code.
def _int64_feature(value):
# value must be a numpy array.
return tf.train.Feature(int64_list=tf.train.Int64List(value=value.flatten()))
# Write an array to TFrecord.
# a is an array which contains lists of variant length.
a = np.array([[0, 54, 91, 153, 177],
[0, 50, 89, 147, 196],
[0, 38, 79, 157],
[0, 49, 89, 147, 177],
[0, 32, 73, 145]])
writer = tf.python_io.TFRecordWriter('file')
for i in range(a.shape[0]): # i = 0 ~ 4
x_train = np.array(a[i])
feature = {'i' : _int64_feature(np.array([i])),
'data': _int64_feature(x_train)}
# Create an example protocol buffer
example = tf.train.Example(features=tf.train.Features(feature=feature))
# Serialize to string and write on the file
writer.write(example.SerializeToString())
writer.close()
# Check TFRocord file.
record_iterator = tf.python_io.tf_record_iterator(path='file')
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
i = (example.features.feature['i'].int64_list.value)
data = (example.features.feature['data'].int64_list.value)
print(i, data)
# Use Dataset API to read the TFRecord file.
filenames = ["file"]
dataset = tf.data.TFRecordDataset(filenames)
def _parse_function(example_proto):
keys_to_features = {'i':tf.VarLenFeature(tf.int64),
'data':tf.VarLenFeature(tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return tf.sparse_tensor_to_dense(parsed_features['i']), \
tf.sparse_tensor_to_dense(parsed_features['data'])
# Parse the record into tensors.
dataset = dataset.map(_parse_function)
# Shuffle the dataset
dataset = dataset.shuffle(buffer_size=1)
# Repeat the input indefinitly
dataset = dataset.repeat()
# Generate batches
dataset = dataset.batch(1)
# Create a one-shot iterator
iterator = dataset.make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(sess.run([i, data]))
print(sess.run([i, data]))
print(sess.run([i, data]))
There are few things to note.
1. This SO question helps a lot.
2. tf.VarLenFeature
would return SparseTensor, thus, using tf.sparse_tensor_to_dense
to convert to dense tensor is necessary.
3. In my code, parse_single_example()
can't be replaced with parse_example()
, and it bugs me for a day. I don't know why parse_example()
doesn't work out. If anyone know the reason, please enlighten me.
The error is very simple. Your data
is not FixedLenFeature
it is VarLenFeature
. Replace your line:
'data':tf.FixedLenFeature([], tf.int64)}
with
'data':tf.VarLenFeature(tf.int64)}
Also, when you call print(i.eval())
and print(data.eval())
you are calling the iterator twice. The first print
will print 0
, but the second one will print the value of the second row [ 0, 50, 89, 147, 196]
. You can do print(sess.run([i, data]))
to get i
and data
from the same row.
来源:https://stackoverflow.com/questions/47939537/how-to-use-dataset-api-to-read-tfrecords-file-of-lists-of-variant-length