青蛙的约会(信息学奥赛一本通 1631)(洛谷 1516)

自作多情 提交于 2019-11-28 12:39:28

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入格式

输入只包括一行5个整数x,y,m,n,L

其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。

输出格式

输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。

输入输出样例

输入 #1

1 2 3 4 5

输出 #1

4


这道题呢就是很显然的拓展欧几里得算法的应用

我们设两只青蛙跳了t次后碰面,则此时青蛙A的坐标为x+m*t,青蛙B的坐标为y+n*t,由题意得

x+m*t-(y+n*t)=L*p(p为整数)

注意这里是指坐标差为长度L的整数倍!(可以简单地在纸上模拟下)

那么,关于拓展欧几里得算法,我这里就不多做解释了,如果想了解更多可以查看这篇博客

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 long long x,y,m,n,l;
 4 void exgcd(long long a,long long b,long long &d,long long &x0,long long &y0)
 5 {
 6     if(!b)
 7     {
 8         d=a;
 9         x0=1;
10         y0=0;
11     }
12     else
13     {
14         exgcd(b,a%b,d,x0,y0);
15         long long t=x0;x0=y0;y0=t-a/b*y0;
16     }
17 }
18 int main()
19 {
20     long long y0,x0,d;
21     scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
22     if(m==n)
23     {
24         puts("Impossible");
25         return 0;
26     }
27     if(n<m)
28         {
29         swap(m,n);
30         swap(x,y);
31     }
32     exgcd(n-m,l,d,x0,y0);
33     if((x-y)%d!=0)
34         puts("Impossible");
35     else
36         printf("%lld",(x0*(x-y)/d%(l/d)+l/d)%(l/d));
37     return 0;
38 }
View Code

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!