题目链接:https://www.nowcoder.com/questionTerminal/49c5284278974cbda474ec13d8bd86a9
题目大意
略
分析1
代码如下(失败的DP,TLE)
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
12
13 #define pr(x) cout << #x << " = " << x << " "
14 #define prln(x) cout << #x << " = " << x << endl
15
16 #define LOWBIT(x) ((x)&(-x))
17
18 #define ALL(x) x.begin(),x.end()
19 #define INS(x) inserter(x,x.begin())
20
21 #define ms0(a) memset(a,0,sizeof(a))
22 #define msI(a) memset(a,inf,sizeof(a))
23 #define msM(a) memset(a,-1,sizeof(a))
24
25 #define MP make_pair
26 #define PB push_back
27 #define ft first
28 #define sd second
29
30 template<typename T1, typename T2>
31 istream &operator>>(istream &in, pair<T1, T2> &p) {
32 in >> p.first >> p.second;
33 return in;
34 }
35
36 template<typename T>
37 istream &operator>>(istream &in, vector<T> &v) {
38 for (auto &x: v)
39 in >> x;
40 return in;
41 }
42
43 template<typename T1, typename T2>
44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
45 out << "[" << p.first << ", " << p.second << "]" << "\n";
46 return out;
47 }
48
49 inline int gc(){
50 static const int BUF = 1e7;
51 static char buf[BUF], *bg = buf + BUF, *ed = bg;
52
53 if(bg == ed) fread(bg = buf, 1, BUF, stdin);
54 return *bg++;
55 }
56
57 inline int ri(){
58 int x = 0, f = 1, c = gc();
59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
61 return x*f;
62 }
63
64 typedef long long LL;
65 typedef unsigned long long uLL;
66 typedef pair< double, double > PDD;
67 typedef pair< int, int > PII;
68 typedef pair< string, int > PSI;
69 typedef set< int > SI;
70 typedef vector< int > VI;
71 typedef vector< PII > VPII;
72 typedef map< int, int > MII;
73 typedef pair< LL, LL > PLL;
74 typedef vector< LL > VL;
75 typedef vector< VL > VVL;
76 const double EPS = 1e-10;
77 const LL inf = 0x7fffffff;
78 const LL infLL = 0x7fffffffffffffffLL;
79 const LL mod = 998244353;
80 const int maxN = 1e4 + 7;
81 const LL ONE = 1;
82 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
83 const LL oddBits = 0x5555555555555555;
84
85 int n, a[maxN];
86 // dp[x][y][z]表示x位置的后一个元素为y,再后一个元素为z,这种情况下前x+2长度一共有多少种
87 LL dp[2][207][207];
88 LL ans = 0;
89
90 void add_mod(LL &a, LL b) {
91 a = (a + b) % mod;
92 }
93
94 /*
95 // x:当前处理到的位置
96 // y:第 x + 1 位置元素的值
97 // z:第 x + 2 位置元素的值
98 unordered_map< LL, int > dp;
99 inline LL dfs(LL x, int y, int z) {
100 if(x == 0) return y <= max(z, a[x]);
101 LL tmp = (x << 16) + (y << 8) + z;
102 if(dp.find(tmp) != dp.end()) return dp[tmp];
103 LL ret = 0;
104 int s = 1, t = 200
105 if(a[x]) s = t = a[x];
106
107 For(i, s, t) if(y <= max(z, i)) add_mod(ret, dfs(x - 1, i, y));
108
109 return dp[tmp] = ret % mod;
110 }
111 */
112
113
114
115 int main(){
116 INIT();
117 cin >> n;
118 For(i, 1, n) cin >> a[i];
119 a[0] = 1;
120 For(y, 1, 200) For(z, 1, 200) dp[0][y][z] = y <= max(z, a[0]);
121
122 int now = 0;
123 For(x, 1, n) {
124 now = !now;
125 ms0(dp[now]);
126 For(y, 1, 200) {
127 For(z, 1, 200) {
128 int s = 1, t = 200;
129 if(a[x]) s = t = a[x];
130 For(i, s, t) if(y <= max(z, i)) add_mod(dp[now][y][z], dp[!now][i][y]);
131 }
132 }
133 }
134
135 cout << dp[now][1][1] << endl;
136 return 0;
137 }
分析2
假定 a[i] 为所求序列的最后一个元素,那么以 a[i] 为结尾的可还原序列种数为$\sum_{j = a[i]}^{200} (以 a[i - 1] = j 为结尾的可还原序列种数)$,特别要注意的是再计算以 a[i] 为结尾的可还原序列种数时,a[i - 1] 和 a[i - 2] 的大小关系可以大于,可以等于,也可以小于。因此我们如果以上面的方式递推地进行DP,最后两个元素的大小关系就必须作为 dp 数组的一个维度。
定义 dp[i][j][k(0:>/1:=/2:<)] 为以 a[i] = j 结尾,a[i] 和 a[i - 1] 的大小关系为 k 时的可还原序列种数。
状态转移方程如下:
- 当 k == 0时,$dp[i][j][0] = \sum_{h = j + 1}^{200} \sum_{k = 0}^{1} dp[i - 1][h][k]$,这里 k 不能取 2,不然 a[i - 1] 将大于两边,为不合法序列。
- 当 k == 1时,$dp[i][j][1] = \sum_{k = 0}^{2} dp[i - 1][j][k]$。
- 当 k == 2时,$dp[i][j][2] = \sum_{h = 1}^{j - 1} \sum_{k = 0}^{2} dp[i - 1][h][k]$。
每次要求和非常麻烦,因此我们可以预处理前缀和。
第一个优化,由上面的分析可以看出,如果把 a[1] 作为第一项,我们必须要先算出所有 dp[2][j][k] 才能进行DP,而 a[1],a[2],起初都是不确定的,为此我们可以设置哨兵 a[-1] = a[0] = 1,这样的话所有 dp[0][j][k] 一目了然。
第二个优化,如果 a[n] 不为 0,那答案就是 $(dp[n][a[n]][0] + dp[n][a[n]][1])$,而如果 a[n] 为 0,那么答案就为$\sum_{j = 1}^{200} (dp[n][j][0] + dp[n][j][1])$,还要分情况讨论,为此我们可以设置一个哨兵 a[n + 1] = 1,算的时候算到 n + 1,就不用讨论了。
代码如下
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
12
13 #define pr(x) cout << #x << " = " << x << " "
14 #define prln(x) cout << #x << " = " << x << endl
15
16 #define LOWBIT(x) ((x)&(-x))
17
18 #define ALL(x) x.begin(),x.end()
19 #define INS(x) inserter(x,x.begin())
20
21 #define ms0(a) memset(a,0,sizeof(a))
22 #define msI(a) memset(a,inf,sizeof(a))
23 #define msM(a) memset(a,-1,sizeof(a))
24
25 #define MP make_pair
26 #define PB push_back
27 #define ft first
28 #define sd second
29
30 template<typename T1, typename T2>
31 istream &operator>>(istream &in, pair<T1, T2> &p) {
32 in >> p.first >> p.second;
33 return in;
34 }
35
36 template<typename T>
37 istream &operator>>(istream &in, vector<T> &v) {
38 for (auto &x: v)
39 in >> x;
40 return in;
41 }
42
43 template<typename T1, typename T2>
44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
45 out << "[" << p.first << ", " << p.second << "]" << "\n";
46 return out;
47 }
48
49 inline int gc(){
50 static const int BUF = 1e7;
51 static char buf[BUF], *bg = buf + BUF, *ed = bg;
52
53 if(bg == ed) fread(bg = buf, 1, BUF, stdin);
54 return *bg++;
55 }
56
57 inline int ri(){
58 int x = 0, f = 1, c = gc();
59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
61 return x*f;
62 }
63
64 typedef long long LL;
65 typedef unsigned long long uLL;
66 typedef pair< double, double > PDD;
67 typedef pair< int, int > PII;
68 typedef pair< string, int > PSI;
69 typedef set< int > SI;
70 typedef vector< int > VI;
71 typedef vector< PII > VPII;
72 typedef map< int, int > MII;
73 typedef pair< LL, LL > PLL;
74 typedef vector< LL > VL;
75 typedef vector< VL > VVL;
76 const double EPS = 1e-10;
77 const LL inf = 0x7fffffff;
78 const LL infLL = 0x7fffffffffffffffLL;
79 const LL mod = 998244353;
80 const int maxN = 1e4 + 7;
81 const LL ONE = 1;
82 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
83 const LL oddBits = 0x5555555555555555;
84
85 int n, a[maxN];
86 // dp[i][j][0/1/2] 代表以a[i]为结尾,a[i] = j时的序列种数。
87 // 第三维代表a[i-1]和a[i]的大小关系(>, ==, <)。
88 LL dp[maxN][207][3];
89 LL preSum1[207], preSum2[207];
90
91 int main(){
92 INIT();
93 cin >> n;
94 For(i, 1, n) cin >> a[i];
95 a[0] = a[n + 1] = 1;// a[-1] = 1 // 一共3个哨兵
96
97 // 预处理
98 dp[0][1][1] = 1;
99 For(i, 1, 200) preSum1[i] = preSum2[i] = 1;
100
101 For(i, 1, n + 1) {
102 int s = 1, t = 200;
103 if(a[i]) s = t = a[i];
104
105 For(j, s, t) {
106 dp[i][j][0] = (preSum2[200] - preSum2[j]) % mod;
107 dp[i][j][1] = (dp[i - 1][j][0] + dp[i - 1][j][1] + dp[i - 1][j][2]) % mod;
108 dp[i][j][2] = preSum1[j - 1] % mod;
109 }
110 // 更新前缀和
111 For(j, 1, 200) {
112 preSum1[j] = preSum1[j - 1] + dp[i][j][0] + dp[i][j][1] + dp[i][j][2];
113 preSum2[j] = preSum2[j - 1] + dp[i][j][0] + dp[i][j][1];
114 }
115
116 }
117
118 cout << (dp[n + 1][1][0]+dp[n + 1][1][1]) % mod << endl;
119 return 0;
120 }
来源:oschina
链接:https://my.oschina.net/u/4278316/blog/3516860