How to get Class label from Mosaic augmentation in Object Detection Dataloader?

旧巷老猫 提交于 2021-02-07 19:56:36

问题


NOTE: I couldn't think any better Title name, you're most welcome to edit or suggestion.

Update

Direct Colab Link. Just grab the given dummy data set and load it to colab.


I'm trying to train an object detection model for a multi-class problem. In my training, I am using the Mosaic augmentation, Paper, for this task.

In my training mechanism, I'm a bit stuck to properly retrieve the class labels of each category, as the augmentation mechanism randomly picks the sub-portion of a sample. However, below is a result of a mosaic augmentation that we've achieved with a relevant bounding box until now.

Data Set

I've created a dummy data set. Link here. The df.head():

It has 4 class in total and df.object.value_counts():

human    23
car      13
cat       5
dog       3

Data Loader and Mosaic Augmentation

The data loader is defined as follows. However, the mosaic augmentation should be defined inside but for now, I'll create a separate code snippet for better demonstration.


IMG_SIZE = 2000

class DatasetRetriever(Dataset):

    def __init__(self, main_df, image_ids, transforms=None, test=False):
        super().__init__()

        self.image_ids = image_ids
        self.main_df = main_df
        self.transforms = transforms
        self.size_limit = 1
        self.test = test

    def __getitem__(self, index: int):
        image_id = self.image_ids[index] 
        image, boxes, labels = self.load_mosaic_image_and_boxes(index)
        
        # labels = torch.tensor(labels, dtype=torch.int64) # for multi-class 
        labels = torch.ones((boxes.shape[0],), dtype=torch.int64) # for single-class 
         
        target = {}
        target['boxes'] = boxes
        target['cls'] = labels
        target['image_id'] = torch.tensor([index])

        if self.transforms:
            for i in range(10):
                sample = self.transforms(**{
                    'image' : image,
                    'bboxes': target['boxes'],
                    'labels': target['cls'] 
                })
                
                assert len(sample['bboxes']) == target['cls'].shape[0], 'not equal!'
                if len(sample['bboxes']) > 0:
                    # image
                    image = sample['image']
                    
                    # box
                    target['boxes'] = torch.tensor(sample['bboxes'])
                    target['boxes'][:,[0,1,2,3]] = target['boxes'][:,[1,0,3,2]]
                    
                    # label
                    target['cls'] = torch.stack(sample['labels'])
                    break
                    
        return image, target

    def __len__(self) -> int:
        return self.image_ids.shape[0]

Basic Transform

def get_transforms():
    return A.Compose(
        [
            A.Resize(height=IMG_SIZE, width=IMG_SIZE, p=1.0),
            ToTensorV2(p=1.0),
        ], 
        p=1.0, 
        bbox_params=A.BboxParams(
            format='pascal_voc',
            min_area=0, 
            min_visibility=0,
            label_fields=['labels']
        )
    )

Mosaic Augmentation

Note, It should be defined inside the data loader. The main issue is, in this augmentation, while iterating will all 4 samples to create such augmentation, image and bounding_box is rescaled as follows:

mosaic_image[y1a:y2a, x1a:x2a] = image[y1b:y2b, x1b:x2b]

offset_x = x1a - x1b
offset_y = y1a - y1b
boxes[:, 0] += offset_x
boxes[:, 1] += offset_y
boxes[:, 2] += offset_x
boxes[:, 3] += offset_y

In this way, how would I select the relevant class labels for those selected bounding_box? Please, see the full code below:

def load_mosaic_image_and_boxes(self, index, s=3000, 
                                    minfrac=0.25, maxfrac=0.75):
        self.mosaic_size = s
        xc, yc = np.random.randint(s * minfrac, s * maxfrac, (2,))

        # random other 3 sample 
        indices = [index] + random.sample(range(len(self.image_ids)), 3) 

        mosaic_image = np.zeros((s, s, 3), dtype=np.float32)
        final_boxes  = [] # box for the sub-region
        final_labels = [] # relevant class labels
        
        for i, index in enumerate(indices):
            image, boxes, labels = self.load_image_and_boxes(index)

            if i == 0:    # top left
                x1a, y1a, x2a, y2a =  0,  0, xc, yc
                x1b, y1b, x2b, y2b = s - xc, s - yc, s, s # from bottom right
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, 0, s , yc
                x1b, y1b, x2b, y2b = 0, s - yc, s - xc, s # from bottom left
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = 0, yc, xc, s
                x1b, y1b, x2b, y2b = s - xc, 0, s, s-yc   # from top right
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc,  s, s
                x1b, y1b, x2b, y2b = 0, 0, s-xc, s-yc    # from top left

            # calculate and apply box offsets due to replacement            
            offset_x = x1a - x1b
            offset_y = y1a - y1b
            boxes[:, 0] += offset_x
            boxes[:, 1] += offset_y
            boxes[:, 2] += offset_x
            boxes[:, 3] += offset_y
            
            # cut image, save boxes
            mosaic_image[y1a:y2a, x1a:x2a] = image[y1b:y2b, x1b:x2b]
            final_boxes.append(boxes)

            '''
            ATTENTION: 
            Need some mechanism to get relevant class labels
            '''
            final_labels.append(labels)

        # collect boxes
        final_boxes  = np.vstack(final_boxes)
        final_labels = np.hstack(final_labels)

        # clip boxes to the image area
        final_boxes[:, 0:] = np.clip(final_boxes[:, 0:], 0, s).astype(np.int32)
        w = (final_boxes[:,2] - final_boxes[:,0])
        h = (final_boxes[:,3] - final_boxes[:,1])
        
        # discard boxes where w or h <10
        final_boxes = final_boxes[(w>=self.size_limit) & (h>=self.size_limit)]

        return mosaic_image, final_boxes, final_labels

That's it. I hope, I make my query clear. Your suggestion would be highly appreciated.


With this query, I've also update another very related query which I've asked a few days ago but didn't get enough response. I update that query too and make it more clear. In case you're interested, please, Link: Stratified K-Fold For Multi-Class Object Detection?


回答1:


Solved -)

The problem is solved. Initially, I thought it in a very hard way, However, all I just need to parse the bounding box and class label information at the same time. Jokes aside, I lost 100 bounties >_<, I should try one more time

Anyway, below is the output that we've achieved now. In case you're interested to try it with your own data set, here is the colab notebook for a starter. Happy coding -)



来源:https://stackoverflow.com/questions/64335735/how-to-get-class-label-from-mosaic-augmentation-in-object-detection-dataloader

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!