How to do cumulative filtering with `purrr::accumulate`?

|▌冷眼眸甩不掉的悲伤 提交于 2021-01-28 01:51:09

问题


I'm looking for an approach to do something like this

# this doesnt work
# accumulate(1:8, ~filter(mtcars, carb >= .x))

So that I can examine some summary statistics at different cutoff values. I could simply do

# this works but redundant filtering is done
map2(list(mtcars), 1:8, ~filter(.x, carb >= .y))

But since my data is rather large, it doesn't make sense to filter out values that were already filtered out in the step just before. In essence, this just duplicates the original dataframe a number of times and then filters each one separately. I was looking at accumulate from the purrr package, but that function doesn't seem fit to this problem (I'm hoping that I'm wrong on this). The base-R solution could be

# something like this works, but is ugly
output <- vector("list", length(1:8) + 1)
output[[1]] <- mtcars
for (i in 1:8) {
  output[[i + 1]] <- filter(output[[i]], carb >= i)
}
output[[1]] <- NULL

but that's not particularly elegant. How can I accomplish this better?

# the above code assumes
library(tidyverse)
mtcars <- as_tibble(mtcars)

This is an example of something the output could be used for:


回答1:


Your initial example accumulate(1:8, ~filter(mtcars, carb >= .x)) doesn't work because it uses the accumulated value (.x) as the filtering criteria, rather than the "next" value (.y). Try this:

library(tidyverse)

accumulate(2:8, function(x,y) filter(x, carb >= y), .init=mtcars)
#> [[1]]
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> 
#> [[2]]
#>     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> 3  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> 4  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> 5  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> 6  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> 7  19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> 8  17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> 9  16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> 10 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> 11 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> 12 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> 13 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> 14 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> 15 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> 16 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> 17 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> 18 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> 19 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> 20 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> 21 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> 22 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> 23 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> 24 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> 25 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> 
#> [[3]]
#>     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> 3  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> 4  19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> 5  17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> 6  16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> 7  17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> 8  15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> 9  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> 10 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> 11 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> 12 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> 13 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> 14 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> 15 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> 
#> [[4]]
#>     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> 3  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> 4  19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> 5  17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> 6  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> 7  10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> 8  14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> 9  13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> 10 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> 11 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> 12 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> 
#> [[5]]
#>    mpg cyl disp  hp drat   wt qsec vs am gear carb
#> 1 19.7   6  145 175 3.62 2.77 15.5  0  1    5    6
#> 2 15.0   8  301 335 3.54 3.57 14.6  0  1    5    8
#> 
#> [[6]]
#>    mpg cyl disp  hp drat   wt qsec vs am gear carb
#> 1 19.7   6  145 175 3.62 2.77 15.5  0  1    5    6
#> 2 15.0   8  301 335 3.54 3.57 14.6  0  1    5    8
#> 
#> [[7]]
#>   mpg cyl disp  hp drat   wt qsec vs am gear carb
#> 1  15   8  301 335 3.54 3.57 14.6  0  1    5    8
#> 
#> [[8]]
#>   mpg cyl disp  hp drat   wt qsec vs am gear carb
#> 1  15   8  301 335 3.54 3.57 14.6  0  1    5    8

Created on 2019-11-21 by the reprex package (v0.3.0)

The .init argument starts you off with mtcars, and then each step filters with an increment from the sequence (y) and passes off the filtered dataframe as the "accumulated" value (x) to the next iteration.



来源:https://stackoverflow.com/questions/58959233/how-to-do-cumulative-filtering-with-purrraccumulate

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!