问题
I'm trying my hand at regularized LR, simple with this formulas in matlab:
The cost function:
J(theta) = 1/m*sum((-y_i)*log(h(x_i)-(1-y_i)*log(1-h(x_i))))+(lambda/2*m)*sum(theta_j)
The gradient:
∂J(theta)/∂theta_0 = [(1/m)*(sum((h(x_i)-y_i)*x_j)] if j=0
∂j(theta)/∂theta_n = [(1/m)*(sum((h(x_i)-y_i)*x_j)]+(lambda/m)*(theta_j) if j>1
This is not matlab code is just the formula.
So far I've done this:
function [J, grad] = costFunctionReg(theta, X, y, lambda)
J = 0;
grad = zeros(size(theta));
temp_theta = [];
%cost function
%get the regularization term
for jj = 2:length(theta)
temp_theta(jj) = theta(jj)^2;
end
theta_reg = lambda/(2*m)*sum(temp_theta);
temp_sum =[];
%for the sum in the cost function
for ii =1:m
temp_sum(ii) = -y(ii)*log(sigmoid(theta'*X(ii,:)'))-(1-y(ii))*log(1-sigmoid(theta'*X(ii,:)'));
end
tempo = sum(temp_sum);
J = (1/m)*tempo+theta_reg;
%regulatization
%theta 0
reg_theta0 = 0;
for jj=1:m
reg_theta0(jj) = (sigmoid(theta'*X(m,:)') -y(jj))*X(jj,1)
end
reg_theta0 = (1/m)*sum(reg_theta0)
grad_temp(1) = reg_theta0
%for the rest of thetas
reg_theta = [];
thetas_sum = 0;
for ii=2:size(theta)
for kk =1:m
reg_theta(kk) = (sigmoid(theta'*X(m,:)') - y(kk))*X(kk,ii)
end
thetas_sum(ii) = (1/m)*sum(reg_theta)+(lambda/m)*theta(ii)
reg_theta = []
end
for i=1:size(theta)
if i == 1
grad(i) = grad_temp(i)
else
grad(i) = thetas_sum(i)
end
end
end
And the cost function is giving correct results, but I have no idea why the gradient (one step) is not, the cost gives J = 0.6931 which is correct and the gradient grad = 0.3603 -0.1476 0.0320, which is not, the cost starts from 2 because the parameter theta(1) does not have to be regularized, any help? I guess there is something wrong with the code, but after 4 days I can't see it.Thanks
回答1:
Vectorized:
function [J, grad] = costFunctionReg(theta, X, y, lambda)
hx = sigmoid(X * theta);
m = length(X);
J = (sum(-y' * log(hx) - (1 - y')*log(1 - hx)) / m) + lambda * sum(theta(2:end).^2) / (2*m);
grad =((hx - y)' * X / m)' + lambda .* theta .* [0; ones(length(theta)-1, 1)] ./ m ;
end
回答2:
I used more variables, so you could see clearly what comes from the regular formula, and what comes from "the regularization cost added". Additionally, It is a good practice to use "vectorization" instead of loops in Matlab/Octave. By doing this, you guarantee a more optimized solution.
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%Hypotheses
hx = sigmoid(X * theta);
%%The cost without regularization
J_partial = (-y' * log(hx) - (1 - y)' * log(1 - hx)) ./ m;
%%Regularization Cost Added
J_regularization = (lambda/(2*m)) * sum(theta(2:end).^2);
%%Cost when we add regularization
J = J_partial + J_regularization;
%Grad without regularization
grad_partial = (1/m) * (X' * (hx -y));
%%Grad Cost Added
grad_regularization = (lambda/m) .* theta(2:end);
grad_regularization = [0; grad_regularization];
grad = grad_partial + grad_regularization;
回答3:
Finally got it, after rewriting it again like for the 4th time, this is the correct code:
function [J, grad] = costFunctionReg(theta, X, y, lambda)
J = 0;
grad = zeros(size(theta));
temp_theta = [];
for jj = 2:length(theta)
temp_theta(jj) = theta(jj)^2;
end
theta_reg = lambda/(2*m)*sum(temp_theta);
temp_sum =[];
for ii =1:m
temp_sum(ii) = -y(ii)*log(sigmoid(theta'*X(ii,:)'))-(1-y(ii))*log(1-sigmoid(theta'*X(ii,:)'));
end
tempo = sum(temp_sum);
J = (1/m)*tempo+theta_reg;
%regulatization
%theta 0
reg_theta0 = 0;
for i=1:m
reg_theta0(i) = ((sigmoid(theta'*X(i,:)'))-y(i))*X(i,1)
end
theta_temp(1) = (1/m)*sum(reg_theta0)
grad(1) = theta_temp
sum_thetas = []
thetas_sum = []
for j = 2:size(theta)
for i = 1:m
sum_thetas(i) = ((sigmoid(theta'*X(i,:)'))-y(i))*X(i,j)
end
thetas_sum(j) = (1/m)*sum(sum_thetas)+((lambda/m)*theta(j))
sum_thetas = []
end
for z=2:size(theta)
grad(z) = thetas_sum(z)
end
% =============================================================
end
If its helps anyone, or anyone has any comments on how can I do it better. :)
回答4:
Here is an answer that eliminates the loops
m = length(y); % number of training examples
predictions = sigmoid(X*theta);
reg_term = (lambda/(2*m)) * sum(theta(2:end).^2);
calcErrors = -y.*log(predictions) - (1 -y).*log(1-predictions);
J = (1/m)*sum(calcErrors)+reg_term;
% prepend a 0 column to our reg_term matrix so we can use simple matrix addition
reg_term = [0 (lambda*theta(2:end)/m)'];
grad = sum(X.*(predictions - y)) / m + reg_term;
来源:https://stackoverflow.com/questions/19824293/regularized-logistic-regression-code-in-matlab