KNN for Text Classification using TF-IDF scores

对着背影说爱祢 提交于 2020-12-13 03:59:09

问题


I have a CSV file (corpus.csv) with graded abstracts (text) in the following format in corpus:

Institute,    Score,    Abstract


----------------------------------------------------------------------


UoM,    3.0,    Hello, this is abstract one

UoM,    3.2,    Hello, this is abstract two and yet counting.

UoE,    3.1,    Hello, yet another abstract but this is a unique one.

UoE,    2.2,    Hello, please no more abstract.

I am trying to create a KNN classification program in python, which is able to get an user input abstract such as, "This is a new unique abstract" and then classify this user input abstract closest to the corpus (CSV) and also returns the score/grade of the predicted abstract. How can I achieve that?

I have the following code:

from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import stopwords
import numpy as np
import pandas as pd
from csv import reader,writer
import operator as op
import string

#Read data from corpus
r = reader(open('corpus.csv','r'))
abstract_list = []
score_list = []
institute_list = []
row_count = 0
for row in list(r)[1:]:
    institute,score,abstract = row
    if len(abstract.split()) > 0:
      institute_list.append(institute)
      score = float(score)
      score_list.append(score)
      abstract = abstract.translate(string.punctuation).lower()
      abstract_list.append(abstract)
      row_count = row_count + 1

print("Total processed data: ", row_count)

#Vectorize (TF-IDF, ngrams 1-4, no stop words) using sklearn -->
vectorizer = TfidfVectorizer(analyzer='word', ngram_range=(1,4),
                     min_df = 0, stop_words = 'english', sublinear_tf=True)
response = vectorizer.fit_transform(abstract_list)
feature_names = vectorizer.get_feature_names()

In the aforementioned code, how can I use the features from TF-IDF computation for KNN classification as mentioned above? (Probably using sklearn.neighborsKNeighborsClassifier framework)

P.S. The classes for this applicative case are the respective scores/grades of the abstracts.

I have background in visual Deep Learning, however, I lack much knowledge in text classification, especially using KNN. Any help would be much appreciated. Thank you in advance.


回答1:


KNN is a classification algorithm - meaning you have to have a class attribute. KNN can use the output of TFIDF as the input matrix - TrainX, but you still need TrainY - the class for each row in your data. However, you could use a KNN regressor. Use your scores as the class variable:

from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import stopwords
import numpy as np
import pandas as pd
from csv import reader,writer
import operator as op
import string
from sklearn import neighbors

#Read data from corpus
r = reader(open('corpus.csv','r'))
abstract_list = []
score_list = []
institute_list = []
row_count = 0
for row in list(r)[1:]:
    institute,score,abstract = row[0], row[1], row[2]
    if len(abstract.split()) > 0:
      institute_list.append(institute)
      score = float(score)
      score_list.append(score)
      abstract = abstract.translate(string.punctuation).lower()
      abstract_list.append(abstract)
      row_count = row_count + 1

print("Total processed data: ", row_count)

#Vectorize (TF-IDF, ngrams 1-4, no stop words) using sklearn -->
vectorizer = TfidfVectorizer(analyzer='word', ngram_range=(1,4),
                     min_df = 0, stop_words = 'english', sublinear_tf=True)
response = vectorizer.fit_transform(abstract_list)
classes = score_list
feature_names = vectorizer.get_feature_names()

clf = neighbors.KNeighborsRegressor(n_neighbors=1)
clf.fit(response, classes)
clf.predict(response)

The "predict" will predict the score for each instance.



来源:https://stackoverflow.com/questions/59057351/knn-for-text-classification-using-tf-idf-scores

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!