MKL-DNN

12倍端到端加速,陈天奇创业公司OctoML提出克服二值网络瓶颈新方法

主宰稳场 提交于 2020-04-27 10:30:37
去年,TVM 开发团队陈天奇等人创建了 OctoML 公司 ,旨在「让机器学习可以部署在所有硬件上」。前段时间,该公司推出了第一个软件即服务产品 Octimizer ,可以帮助开发者更方便、快捷地将 ML 模型部署到设备上。近日,该公司官方博客又介绍了一种快速端到端二值神经网络——Riptide,使用 TVM 进行优化时可以实现最高 12 倍的端到端加速。该公司机器学习系统工程师 Josh Fromm 在博客中介绍了 Riptide 的细节。 选自medium,作者:Josh Fromm,机器之心编译,机器之心编辑部。 Riptide 是一种新的模型量化方法,可以将模型量化至 1、2 位。研究团队今年三月在 MLSys 上介绍了 Riptide,这篇文章主要讲一下为什么要构建 Riptide,并快速了解它的幕后工作原理。团队计划来年将 Automatic ultra low-bit 功能添加到 Octomizer 中。在此之前,读者可以使用开源 Riptide 项目和 MLSys 论文中的信息来进行模型优化。 论文链接: https:// proceedings.mlsys.org/s tatic/paper_files/mlsys/2020/155-Paper.pdf GitHub 项目: https:// github.com/jwfromm/Ript ide 、 动机及背景

性能领先,即训即用,快速部署,飞桨首次揭秘服务器端推理库

烂漫一生 提交于 2020-03-18 18:54:45
3 月,跳不动了?>>> 假如问在深度学习实践中,最难的部分是什么?猜测80%的开发者都会说: “当然是调参啊。” 为什么难呢?因为调参就像厨师根据食材找到了料理配方,药剂师根据药材找到了药方,充满了玄幻色彩。 但是, 掌握了调参,顶多算深度学习的绝学掌握了一半。而另一半就是“模型部署”。 模型部署有什么难的?举个例子:前面这位大厨在培训学校,经过各种训练掌握了很多料理配方,终于要到酒店上任了,却发现酒店的厨房环境和训练时不一样,就餐高峰时手忙脚乱,客户等了1个小时还没上菜,结果第一天上岗就被投诉了。 虽然比喻略有夸张,却也道出了深度学习模型训练和推理部署的关系。 我们知道,深度学习一般分为训练和推理两个部分,训练是神经网络“学习”的过程,主要关注如何搜索和求解模型参数,发现训练数据中的规律。 有了训练好的模型之后,就要在线上环境中应用模型,实现对未知数据做出预测,这个过程在AI领域叫做推理。 在实际应用中,推理阶段可能会面临和训练时完全不一样的硬件环境,当然也对应着不一样的计算性能要求。我们训练得到的模型,需要能在具体生产环境中正确、高效地实现推理功能,完成上线部署。 所以,当我们千辛万苦训练好模型,终于要上线了,但这个时候可能会遇到各种问题,比如: 线上部署的硬件环境和训练时不同 推理计算耗时太高, 可能造成服务不可用 模型上的内存占用过高无法上线 对工业级部署而言