pytorch数据读取

邮差的信 提交于 2020-11-13 02:26:24

pytorch数据读取机制:

sampler生成索引index,根据索引从DataSet中获取图片和标签

 

1.torch.utils.data.DataLoader

功能:构建可迭代的数据装在器

dataset:Dataset类,决定数据从哪读取及如何读取

batchsize:批大小

num_works:是否多进程读取数据,当条件允许时,多进程读取数据会加快数据读取速度。

shuffle:每个epoch是否乱序

drop_last:当样本数不能被batchsize整除时,是否舍弃最后一批数据

DataLoader(dataset, batchsize=1, shuffle=False, batch_sampler=None, num_workers=0, collate_fn=None, pin_memeory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None)

 

epoch:所有训练样本都已输入到模型中,称为一个epoch

iteration:一批样本输入到模型中,称为一个iteration

batchsize:批大小,决定一个epoch有多少个iteration

例如:

样本总数:80, batchsize:8

1epoch = 10 iteraion

样本总数:87, batchsize:8

1 epoch = 10 iteration drop_last=True

1 epoch = 11 iteration drop_last=False

 

2.torch.utils.data.Dataset

功能:Dataset抽象类,所有自定义的Dataset需要继承它,并且复写

__getitem__()

getitem:接收一个索引,返回一个样本

class Dataset(object):
    def __getitem__(self, index):
        raise NotImplementedError
    
    def __add__(self, other):
        return ConcatDataset([self, other])

 

人命币分类实例:

数据分割:

import os
import random
import shutil


def makedir(new_dir):
    if not os.path.exists(new_dir):
        os.makedirs(new_dir)


if __name__ == '__main__':

    random.seed(1)

    dataset_dir = os.path.join("..", "..", "data", "RMB_data")
    split_dir = os.path.join("..", "..", "data", "rmb_split")
    train_dir = os.path.join(split_dir, "train")
    valid_dir = os.path.join(split_dir, "valid")
    test_dir = os.path.join(split_dir, "test")

    train_pct = 0.8
    valid_pct = 0.1
    test_pct = 0.1

    for root, dirs, files in os.walk(dataset_dir):
        for sub_dir in dirs:

            imgs = os.listdir(os.path.join(root, sub_dir))
            imgs = list(filter(lambda x: x.endswith('.jpg'), imgs))
            random.shuffle(imgs)
            img_count = len(imgs)

            train_point = int(img_count * train_pct)
            valid_point = int(img_count * (train_pct + valid_pct))

            for i in range(img_count):
                if i < train_point:
                    out_dir = os.path.join(train_dir, sub_dir)
                elif i < valid_point:
                    out_dir = os.path.join(valid_dir, sub_dir)
                else:
                    out_dir = os.path.join(test_dir, sub_dir)

                makedir(out_dir)

                target_path = os.path.join(out_dir, imgs[i])
                src_path = os.path.join(dataset_dir, sub_dir, imgs[i])

                shutil.copy(src_path, target_path)

            print('Class:{}, train:{}, valid:{}, test:{}'.format(sub_dir, train_point, valid_point-train_point,
                                                                 img_count-valid_point))

创建Dataset

import os
import random
from PIL import Image
from torch.utils.data import Dataset

random.seed(1)
rmb_label = {"1": 0, "100": 1}


class RMBDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        """
        rmb面额分类任务的Dataset
        :param data_dir: str, 数据集所在路径
        :param transform: torch.transform,数据预处理
        """
        self.label_name = {"1": 0, "100": 1}
        self.data_info = self.get_img_info(data_dir)  # data_info存储所有图片路径和标签,在DataLoader中通过index读取样本
        self.transform = transform

    def __getitem__(self, index):
        path_img, label = self.data_info[index]
        img = Image.open(path_img).convert('RGB')     # 0~255

        if self.transform is not None:
            img = self.transform(img)   # 在这里做transform,转为tensor等等

        return img, label

    def __len__(self):
        return len(self.data_info)

    @staticmethod
    def get_img_info(data_dir):
        data_info = list()
        for root, dirs, _ in os.walk(data_dir):
            # 遍历类别
            for sub_dir in dirs:
                img_names = os.listdir(os.path.join(root, sub_dir))
                img_names = list(filter(lambda x: x.endswith('.jpg'), img_names))

                # 遍历图片
                for i in range(len(img_names)):
                    img_name = img_names[i]
                    path_img = os.path.join(root, sub_dir, img_name)
                    label = rmb_label[sub_dir]
                    data_info.append((path_img, int(label)))

        return data_info

 

3.transforms

torch.transforms:常用图像处理方法

数据中心化  数据标准化  缩放  裁剪  旋转  翻转  填充  噪声添加  灰度转换  线性变换  仿射变换  亮度、饱和度及对比度

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!