#include<stdio.h>
#include<stdlib.h>
typedef struct Node
{
int key; /*序号,用来排序使用*/
struct Node *left; /*左节点*/
struct Node *right; /*右节点*/
int height; /*深度*/
}BTNode;
int max(int a, int b);
int height(struct Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
int max(int a, int b)
{
return (a > b) ? a : b;
}
BTNode* newNode(int key)
{
struct Node* node = (BTNode*)malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1;
return(node);
}
/*左旋和右旋主要是把原先的二叉树拆分为两个子树,重新拼接的过程*/
/*右旋*/
BTNode* ll_rotate(BTNode* y)
{
BTNode *x = y->left;/*提取左子树作为根*/
y->left = x->right;/*生成一个右二叉树*/
x->right = y;/*把右二叉树接到根节点*/
y->height = max(height(y->left), height(y->right)) + 1;
x->height = max(height(x->left), height(x->right)) + 1;
return x;
}
/*左旋*/
BTNode* rr_rotate(BTNode* y)
{
BTNode *x = y->right;
y->right = x->left;
x->left = y;
y->height = max(height(y->left), height(y->right)) + 1;
x->height = max(height(x->left), height(x->right)) + 1;
return x;
}
/*获取平衡因子*/
int getBalance(BTNode* N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
BTNode* insert(BTNode* node, int key)
{
if (node == NULL)
return newNode(key);
/*比根节点小的放在左边,大的放右边*/
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else
return node;
node->height = 1 + max(height(node->left), height(node->right));
int balance = getBalance(node);
if (balance > 1 && key < node->left->key) //LL型
return ll_rotate(node);
if (balance < -1 && key > node->right->key) //RR型
return rr_rotate(node);
if (balance > 1 && key > node->left->key) //LR型
{
node->left = rr_rotate(node->left);
return ll_rotate(node);
}
if (balance < -1 && key < node->right->key) //RL型
{
node->right = ll_rotate(node->right);
return rr_rotate(node);
}
return node;
}
/*获取所有节点总比根结点大一个度的节点*/
BTNode * minValueNode(BTNode* node)
{
BTNode* current = node;
while (current->left != NULL)
current = current->left;
return current;
}
BTNode* deleteNode(BTNode* root, int key)
{
if (root == NULL)
return root;
if (key < root->key)
root->left = deleteNode(root->left, key);
else if (key > root->key)
root->right = deleteNode(root->right, key);
else
{
/*如果要删除的节点没有子节点*/
if ((root->left == NULL) || (root->right == NULL))
{
BTNode* temp = root->left ? root->left : root->right;
if (temp == NULL)
{
temp = root;
root = NULL;
}
else
*root = *temp;
free(temp);
}
else
{
/*如果有子节点就把比该节点大一号的节点替换到该节点*/
BTNode* temp = minValueNode(root->right);
root->key = temp->key;
root->right = deleteNode(root->right, temp->key);
}
}
if (root == NULL)
return root;
root->height = 1 + max(height(root->left), height(root->right));
int balance = getBalance(root);
if (balance > 1 && getBalance(root->left) >= 0) //LL型
return ll_rotate(root);
if (balance > 1 && getBalance(root->left) < 0) //LR型
{
root->left = rr_rotate(root->left);
return ll_rotate(root);
}
if (balance < -1 && getBalance(root->right) <= 0) //RR型
return rr_rotate(root);
if (balance < -1 && getBalance(root->right) > 0) //Rl型
{
root->right = ll_rotate(root->right);
return rr_rotate(root);
}
return root;
}
void preOrder(struct Node *root)
{
if (root != NULL)
{
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
int main()
{
BTNode *root = NULL;
root = insert(root, 9);
root = insert(root, 5);
root = insert(root, 10);
root = insert(root, 0);
root = insert(root, 6);
root = insert(root, 11);
root = insert(root, -1);
root = insert(root, 1);
root = insert(root, 2);
printf("前序遍历:n");
preOrder(root);
/* The constructed AVL Tree would be
9
/
1 10
/
0 5 11
/ /
-1 2 6
*/
root = deleteNode(root, 10);
/* The AVL Tree after deletion of 10
1
/
0 9
/ /
-1 5 11
/
2 6
*/
printf("n");
printf("前序遍历:n");
preOrder(root);
return 0;
}
————————————————
版权声明:本文为CSDN博主「月雲之霄」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/isunbin/java/article/details/81707606
1. 平衡因子:将二叉树上节点的左子树高度减去右子树高度的值称为该节点的平衡因子BF(Balance Factor)。
2. 最小不平衡子树:距离插入节点最近的,且平衡因子的绝对值大于1的节点为根的子树.。
来源:oschina
链接:https://my.oschina.net/u/2252538/blog/4295086