how to store numpy arrays as tfrecord?

帅比萌擦擦* 提交于 2020-07-18 08:59:06

问题


I am trying to create a dataset in tfrecord format from numpy arrays. I am trying to store 2d and 3d coordinates.

2d coordinates are numpy array of shape (2,10) of type float64 3d coordinates are numpy array of shape (3,10) of type float64

this is my code:

def _floats_feature(value):
    return tf.train.Feature(float_list=tf.train.FloatList(value=value))


train_filename = 'train.tfrecords'  # address to save the TFRecords file
writer = tf.python_io.TFRecordWriter(train_filename)


for c in range(0,1000):

    #get 2d and 3d coordinates and save in c2d and c3d

    feature = {'train/coord2d': _floats_feature(c2d),
                   'train/coord3d': _floats_feature(c3d)}
    sample = tf.train.Example(features=tf.train.Features(feature=feature))
    writer.write(sample.SerializeToString())

writer.close()

when i run this i get the error:

  feature = {'train/coord2d': _floats_feature(c2d),
  File "genData.py", line 19, in _floats_feature
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
  File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\google\protobuf\internal\python_message.py", line 510, in init
copy.extend(field_value)
  File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\google\protobuf\internal\containers.py", line 275, in extend
new_values = [self._type_checker.CheckValue(elem) for elem in elem_seq_iter]
  File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\google\protobuf\internal\containers.py", line 275, in <listcomp>
new_values = [self._type_checker.CheckValue(elem) for elem in elem_seq_iter]
  File "C:\Users\User\AppData\Local\Programs\Python\Python36\lib\site-packages\google\protobuf\internal\type_checkers.py", line 109, in CheckValue
raise TypeError(message)
TypeError: array([-163.685,  240.818, -114.05 , -518.554,  107.968,  427.184,
    157.418, -161.798,   87.102,  406.318]) has type <class 'numpy.ndarray'>, but expected one of: ((<class 'numbers.Real'>,),)

I dont know how to fix this. should i store the features as int64 or bytes? I have no clue how to go about this since i am completely new to tensorflow. any help would be great! thanks


回答1:


The tf.train.Feature class only supports lists (or 1-D arrays) when using the float_list argument. Depending on your data, you might try one of the following approaches:

  1. Flatten the data in your array before passing it to tf.train.Feature:

    def _floats_feature(value):
      return tf.train.Feature(float_list=tf.train.FloatList(value=value.reshape(-1)))
    

    Note that you might need to add another feature to indicate how this data should be reshaped when you parse it again (and you could use an int64_list feature for that purpose).

  2. Split the multidimensional feature into multiple 1-D features. For example, if c2d contains an N * 2 array of x- and y-coordinates, you could split that feature into separate train/coord2d/x and train/coord2d/y features, each containing the x- and y-coordinate data, respectively.




回答2:


The function _floats_feature described in the Tensorflow-Guide expects a scalar (either float32 or float64) as input.

def _float_feature(value):
  """Returns a float_list from a float / double."""
  return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))

As you can see the inputted scalar is written into a list (value=[value]) which is subsequently given to tf.train.FloatList as input. tf.train.FloatList expects an iterator that outputs a float in each iteration (as the list does).

If your feature is not a scalar but a vectur, _float_feature can be rewritten to pass the iterator directly to tf.train.FloatList (instead of putting it into a list first).

def _float_array_feature(value):
  return tf.train.Feature(float_list=tf.train.FloatList(value=value))

However if your feature has two or more dimensions this solution does not work anymore. Like @mmry described in his answer in this case flattening your feature or splitting it into several one-dimensional features would be a solution. The disadvantage of these two approaches is that the information about the actual shape of the feature is lost if no further effort is invested.

Another possibility to write an example message for a higher dimensional array is to convert the array into a byte string and then use the _bytes_feature function described in the Tensorflow-Guide to write the example message for it. The example message is then serialized and written into a TFRecord file.

import tensorflow as tf
import numpy as np

def _bytes_feature(value):
    """Returns a bytes_list from a string / byte."""
    if isinstance(value, type(tf.constant(0))): # if value ist tensor
        value = value.numpy() # get value of tensor
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def serialize_array(array):
  array = tf.io.serialize_tensor(array)
  return array


#----------------------------------------------------------------------------------
# Create example data
array_blueprint = np.arange(4, dtype='float64').reshape(2,2)
arrays = [array_blueprint+1, array_blueprint+2, array_blueprint+3]

#----------------------------------------------------------------------------------
# Write TFrecord file
file_path = 'data.tfrecords'
with tf.io.TFRecordWriter(file_path) as writer:
  for array in arrays:
    serialized_array = serialize_array(array)
    feature = {'b_feature': _bytes_feature(serialized_array)}
    example_message = tf.train.Example(features=tf.train.Features(feature=feature))
    writer.write(example_message.SerializeToString())

The serialized example messages stored in the TFRecord file can be accessed via tf.data.TFRecordDataset. After the example messages have been parsed, the original array needs to be restored from the byte string it was converted to. This is possible via tf.io.parse_tensor.

# Read TFRecord file
def _parse_tfr_element(element):
  parse_dic = {
    'b_feature': tf.io.FixedLenFeature([], tf.string), # Note that it is tf.string, not tf.float32
    }
  example_message = tf.io.parse_single_example(element, parse_dic)

  b_feature = example_message['b_feature'] # get byte string
  feature = tf.io.parse_tensor(b_feature, out_type=tf.float64) # restore 2D array from byte string
  return feature


tfr_dataset = tf.data.TFRecordDataset('data.tfrecords') 
for serialized_instance in tfr_dataset:
  print(serialized_instance) # print serialized example messages

dataset = tfr_dataset.map(_parse_tfr_element)
for instance in dataset:
  print()
  print(instance) # print parsed example messages with restored arrays


来源:https://stackoverflow.com/questions/47861084/how-to-store-numpy-arrays-as-tfrecord

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!