这个仅 7M 大小的人脸监测模型几乎监测出了世界最大自拍照中的所有人像!
项目简介
之前机器之心报道过一个跨平台人脸检测项目,在 CPU 上就能轻松跑出 1000FPS。这次介绍的项目也是一个轻量级人脸检测项目。不同的是,该项目在保持较小参数量的前提下,检测精度要高很多,并且只需要 OpenCV 和 PyTorch 就能运行。
DBFace 是一个轻量级的实时人脸检测方法,其有着更快的检测速度与更高的精度。下图展示了多种人脸检测方法在 WiderFace 数据集上的测试效果。可以看到不仅 DBFace 模型的大小最小,其在 Easy、medium、Hard 三个测试任务中均取得了最高的检测精度。
项目地址:https://github.com/dlunion/DBFace
WiderFace 是一个关于人脸检测的基准跑分数据集,其中包含 32,203 张图片以及在各方面剧烈的 393,703 张人脸,数据集具有从简单到困难等不同难度的任务。下图是改数据集中一些样本的展示,可以看到,要想准确地检测出图中所有人脸还是很有挑战的。DBFace 在该数据集的不同任务上分别取得 0.925、0.920、0.847 的准确率,实属不易。
有关 WiderFace 的详细介绍请读者移步其官网:http://shuoyang1213.me/WIDERFACE/
效果展示
下图展示了不同人脸检测方法在 WiderFace 数据集上的 P-R 曲线。P-R 曲线可以较直观地展示二分类器的 Precision 和 Recall。当需要对不同算法进行比较时,若某个二分类器的 P-R 曲线被另一个二分类器的 P-R 曲线完全包住,即表明后者的性能优于前者。从图中可以看到,DBFace 包围的面积在三个任务中均相对较大。
当阈值设置为 0.2 时,DBFace 对这张世界最大的自拍照检测效果如下图所示:
可以看到,DBFace 的检测准确率非常高,图中很多人脸甚至放大后单凭肉眼也很难分辨,DBFace 却仍然能够检测出来,并且模型大小仅 7M,完全能够在边缘设备上实时运行。于是,机器之心也上手测试了一番。
项目实测
项目作者提供的代码示例中包含对静态图片的检测,同时也有一个调用电脑摄像头的 GUI。值得注意的是,该项目并不需要太多依赖项,只要有 PyTorch、Numpy 和 OpenCV 即可运行。由于以上依赖环境都是非常常用的扩展库,网上有大量相应安装教程,这里就略过其安装步骤。
在 main.py 中,image_demo() 与 camera_demo() 分别对应静态图片检测与调用摄像头进行检测。静态图片检测代码为:
def image_demo():
dbface = DBFace()
dbface.eval()
if HAS_CUDA:
dbface.cuda()
dbface.load("model/dbface.pth")
detect_image(dbface, "datas/selfie.jpg")
以上代码将会读取训练后的模型,对图片datas/selfie.jpg进行检测,并将结果保存到 detect_result/selfie.draw.jpg。
让我们来看一下检测效果:
从上图可以看到,即使在室内灯光颜色、明暗差别较大的环境下,DBFace 也检测出了图中几乎所有的人,甚至是中间那个一边画彩虹,一边指向闪耀灯球戴头盔的人也难逃其「魔掌」。当然,由于这里设置的检测阈值较低,存在一些误分类的现象。图中一些人的手和右上角的灯球就被误检测为了人脸。适当调高阈值即可消除此现象。
调用电脑摄像头检测的代码为:
def camera_demo():
dbface = DBFace()
dbface.eval()
if HAS_CUDA:
dbface.cuda()
dbface.load("model/dbface.pth")
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
ok, frame = cap.read()
while ok:
objs = detect(dbface, frame)
for obj in objs:
common.drawbbox(frame, obj)
cv2.imshow("demo DBFace", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
ok, frame = cap.read()
运行以上代码将会生成一个 640x480 的 GUI 界面,调用摄像头实时进行人脸检测。
感兴趣的小伙伴赶快将本项目 git clone 到本地测试一下吧!
来源:oschina
链接:https://my.oschina.net/u/4355040/blog/3229471