问题
I would like to merge on the same plot both the precision and recall using Tensorflow and tensorboard V2. I found many examples for the previous versions, but none of them is working in my case.
I have created a Keras callback that calculates the precision and recall, then I call a tensorflow summary to log them in the same logger. I can visualize them in Tensorboard, but in 2 separated plots.
Class ClassificationReport(Callback):
def __init__(self, data_generator, steps, label_names, log_directory):
"""
Instantiator
:param data_generator: the data generator that produces the input data
:param steps: int, batch size
:param data_type, string, 'training', 'validation' or 'test', used a prefix in the logs
:param log_directory: pathlib2 path to the TensorBoard log directory
"""
self.data_generator = data_generator
self.steps = steps
self.data_type = data_type
self.logger = tensorflow.summary.create_file_writer(str(log_directory / self.data_type))
# names of the scalar to consider in the sklearn classification report
self._scalar_names = ['precision', 'recall']
def on_epoch_end(self, epoch, logs={}):
"""
log the precision and recall
:param epoch: int, number of epochs
:param logs: the Keras dictionary where the metrics are stored
"""
y_true = numpy.zeros(self.steps)
y_predicted = numpy.zeros(self.steps)
...Here I fetch y_true and y_predicted with the data_generator
# The current report is calculated by SciKit-Learn
current_report = classification_report(y_true, y_predicted, output_dict=True)
with self.logger.as_default():
for scalar_name in self._scalar_names:
tensorflow.summary.scalar(
name="{} / macro average / {}".format(self.data_type, scalar_name),
data=current_report['macro avg'][scalar_name],
step=epoch)
return super().on_epoch_end(epoch, logs)
As far as I understant the Tensorboard 2 logic, it doesn't seem to be possible to plot 2 scalar summaries on the same plot... Any advice is welcomed at this stage.
回答1:
Use two different writers with the same scalar summary name.
import numpy as np
import tensorflow as tf
logger1 = tf.summary.create_file_writer('logs/scalar/precision')
logger2 = tf.summary.create_file_writer('logs/scalar/recall')
precision = np.random.uniform(size=10)
recall = np.random.uniform(size=10)
for i in range(10):
with logger1.as_default():
tf.summary.scalar(name='precision-recall', data=precision[i], step=i)
with logger2.as_default():
tf.summary.scalar(name='precision-recall', data=recall[i], step=i)
tensorboard --logdir logs/scalar
From this answer, adapted for tf2: https://stackoverflow.com/a/38718948/5597718
来源:https://stackoverflow.com/questions/58181527/merging-2-plots-in-tensorboard-2-with-tensorflow-2