Spark MLlib SVM算法

若如初见. 提交于 2020-03-25 08:33:20

3 月,跳不动了?>>>

1.1 SVM支持向量机算法

支持向量机理论知识参照以下文档:

支持向量机SVM(一)

http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982639.html

支持向量机SVM(二)

http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982684.html

支持向量机(三)核函数

http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988406.html

支持向量机(四)

http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988415.html

支持向量机(五)SMO算法

http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html

SVM的目标函数及梯度下降更新公式如下:

MLlib 中 SVM的代码结构如下:

1.2 Spark Mllib SVM源码分析

1.2.1 SVMWithSGD

SVM算法的train方法,由SVMWithSGD类的object定义了train函数,在train函数中新建了SVMWithSGD对象。

package org.apache.spark.mllib.classification

// 1 类:SVMWithSGD

class SVMWithSGD private (

    privatevar stepSize: Double,

    privatevar numIterations: Int,

    privatevar regParam: Double,

    privatevar miniBatchFraction: Double)

  extends GeneralizedLinearAlgorithm[SVMModel] with Serializable {

 

  privateval gradient = new HingeGradient()

  privateval updater = new SquaredL2Updater()

  overrideval optimizer = new GradientDescent(gradient, updater)

    .setStepSize(stepSize)

    .setNumIterations(numIterations)

    .setRegParam(regParam)

    .setMiniBatchFraction(miniBatchFraction)

  overrideprotectedval validators = List(DataValidators.binaryLabelValidator)

 

  /**

   * Construct a SVM object with default parameters: {stepSize: 1.0, numIterations: 100,

   * regParm: 0.01, miniBatchFraction: 1.0}.

   */

  defthis() = this(1.0, 100, 0.01, 1.0)

 

  overrideprotecteddef createModel(weights: Vector, intercept: Double) = {

    new SVMModel(weights, intercept)

  }

}

SVMWithSGD类中参数说明:

stepSize: 迭代步长,默认为1.0

numIterations: 迭代次数,默认为100

regParam: 正则化参数,默认值为0.0

miniBatchFraction: 每次迭代参与计算的样本比例,默认为1.0

gradient:HingeGradient (),梯度下降;

updater:SquaredL2Updater (),正则化,L2范数;

optimizer:GradientDescent (gradient, updater),梯度下降最优化计算。

// 2 train方法

object SVMWithSGD {

  /**

   * Train a SVM model given an RDD of (label, features) pairs. We run a fixed number

   * of iterations of gradient descent using the specified step size. Each iteration uses

   * `miniBatchFraction` fraction of the data to calculate the gradient. The weights used in

   * gradient descent are initialized using the initial weights provided.

   *

   * NOTE: Labels used in SVM should be {0, 1}.

   *

   * @param input RDD of (label, array of features) pairs.

   * @param numIterations Number of iterations of gradient descent to run.

   * @param stepSize Step size to be used for each iteration of gradient descent.

   * @param regParam Regularization parameter.

   * @param miniBatchFraction Fraction of data to be used per iteration.

   * @param initialWeights Initial set of weights to be used. Array should be equal in size to

   *        the number of features in the data.

   */

  def train(

      input: RDD[LabeledPoint],

      numIterations: Int,

      stepSize: Double,

      regParam: Double,

      miniBatchFraction: Double,

      initialWeights: Vector): SVMModel = {

    new SVMWithSGD(stepSize, numIterations, regParam, miniBatchFraction)

      .run(input, initialWeights)

  }

train参数说明:

input:样本数据,分类标签lable只能是1.0和0.0两种,feature为double类型

numIterations: 迭代次数,默认为100

stepSize: 迭代步长,默认为1.0

miniBatchFraction: 每次迭代参与计算的样本比例,默认为1.0

initialWeights:初始权重,默认为0向量

run方法来自于继承父类GeneralizedLinearAlgorithm,实现方法如下。

1.2.2 GeneralizedLinearAlgorithm

LogisticRegressionWithSGD中run方法的实现。

package org.apache.spark.mllib.regression

/**

   * Run the algorithm with the configured parameters on an input RDD

   * of LabeledPoint entries starting from the initial weights provided.

   */

  def run(input: RDD[LabeledPoint], initialWeights: Vector): M = {

// 特征维度赋值。

    if (numFeatures < 0) {

      numFeatures = input.map(_.features.size).first()

    }

// 输入样本数据检测。

    if (input.getStorageLevel == StorageLevel.NONE) {

      logWarning("The input data is not directly cached, which may hurt performance if its"

        + " parent RDDs are also uncached.")

    }

// 输入样本数据检测。

    // Check the data properties before running the optimizer

    if (validateData && !validators.forall(func => func(input))) {

      thrownew SparkException("Input validation failed.")

    }

val scaler = if (useFeatureScaling) {

      new StandardScaler(withStd = true, withMean = false).fit(input.map(_.features))

    } else {

      null

    }

// 输入样本数据处理,输出data(label, features)格式。

// addIntercept:是否增加θ0常数项,若增加,则增加x0=1项。

    // Prepend an extra variable consisting of all 1.0's for the intercept.

    // TODO: Apply feature scaling to the weight vector instead of input data.

    val data =

      if (addIntercept) {

        if (useFeatureScaling) {

          input.map(lp => (lp.label, appendBias(scaler.transform(lp.features)))).cache()

        } else {

          input.map(lp => (lp.label, appendBias(lp.features))).cache()

        }

      } else {

        if (useFeatureScaling) {

          input.map(lp => (lp.label, scaler.transform(lp.features))).cache()

        } else {

          input.map(lp => (lp.label, lp.features))

        }

      }

//初始化权重。

// addIntercept:是否增加θ0常数项,若增加,则权重增加θ0。

    /**

     * TODO: For better convergence, in logistic regression, the intercepts should be computed

     * from the prior probability distribution of the outcomes; for linear regression,

     * the intercept should be set as the average of response.

     */

    val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) {

      appendBias(initialWeights)

    } else {

      /** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */

      initialWeights

    }

//权重优化,进行梯度下降学习,返回最优权重。

    val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept)

 

    val intercept = if (addIntercept && numOfLinearPredictor == 1) {

      weightsWithIntercept(weightsWithIntercept.size - 1)

    } else {

      0.0

    }

 

    var weights = if (addIntercept && numOfLinearPredictor == 1) {

      Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1))

    } else {

      weightsWithIntercept

    }

 

    createModel(weights, intercept)

}

其中optimizer.optimize(data, initialWeightsWithIntercept)是实现的核心。

oprimizer的类型为GradientDescent,optimize方法中主要调用GradientDescent伴生对象的runMiniBatchSGD方法,返回当前迭代产生的最优特征权重向量。

GradientDescentd对象中optimize实现方法如下。

1.2.3 GradientDescent

optimize实现方法如下。

package org.apache.spark.mllib.optimization

/**

   * :: DeveloperApi ::

   * Runs gradient descent on the given training data.

   * @param data training data

   * @param initialWeights initial weights

   * @return solution vector

   */

  @DeveloperApi

  def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = {

    val (weights, _) = GradientDescent.runMiniBatchSGD(

      data,

      gradient,

      updater,

      stepSize,

      numIterations,

      regParam,

      miniBatchFraction,

      initialWeights)

    weights

  }

 

}

在optimize方法中,调用了GradientDescent.runMiniBatchSGD方法,其runMiniBatchSGD实现方法如下:

/**

   * Run stochastic gradient descent (SGD) in parallel using mini batches.

   * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data

   * in order to compute a gradient estimate.

   * Sampling, and averaging the subgradients over this subset is performed using one standard

   * spark map-reduce in each iteration.

   *

   * @param data - Input data for SGD. RDD of the set of data examples, each of

   *               the form (label, [feature values]).

   * @param gradient - Gradient object (used to compute the gradient of the loss function of

   *                   one single data example)

   * @param updater - Updater function to actually perform a gradient step in a given direction.

   * @param stepSize - initial step size for the first step

   * @param numIterations - number of iterations that SGD should be run.

   * @param regParam - regularization parameter

   * @param miniBatchFraction - fraction of the input data set that should be used for

   *                            one iteration of SGD. Default value 1.0.

   *

   * @return A tuple containing two elements. The first element is a column matrix containing

   *         weights for every feature, and the second element is an array containing the

   *         stochastic loss computed for every iteration.

   */

  def runMiniBatchSGD(

      data: RDD[(Double, Vector)],

      gradient: Gradient,

      updater: Updater,

      stepSize: Double,

      numIterations: Int,

      regParam: Double,

      miniBatchFraction: Double,

      initialWeights: Vector): (Vector, Array[Double]) = {

//历史迭代误差数组

    val stochasticLossHistory = new ArrayBuffer[Double](numIterations)

//样本数据检测,若为空,返回初始值。

    val numExamples = data.count()

 

    // if no data, return initial weights to avoid NaNs

    if (numExamples == 0) {

      logWarning("GradientDescent.runMiniBatchSGD returning initial weights, no data found")

      return (initialWeights, stochasticLossHistory.toArray)

    }

// miniBatchFraction值检测。

    if (numExamples * miniBatchFraction < 1) {

      logWarning("The miniBatchFraction is too small")

    }

// weights权重初始化。

    // Initialize weights as a column vector

    var weights = Vectors.dense(initialWeights.toArray)

    val n = weights.size

 

    /**

     * For the first iteration, the regVal will be initialized as sum of weight squares

     * if it's L2 updater; for L1 updater, the same logic is followed.

     */

    var regVal = updater.compute(

      weights, Vectors.dense(new Array[Double](weights.size)), 0, 1, regParam)._2

// weights权重迭代计算。

    for (i <- 1 to numIterations) {

      val bcWeights = data.context.broadcast(weights)

      // Sample a subset (fraction miniBatchFraction) of the total data

      // compute and sum up the subgradients on this subset (this is one map-reduce)

// 采用treeAggregate的RDD方法,进行聚合计算,计算每个样本的权重向量、误差值,然后对所有样本权重向量及误差值进行累加。

// sample是根据miniBatchFraction指定的比例随机采样相应数量的样本 。

      val (gradientSum, lossSum, miniBatchSize) = data.sample(false, miniBatchFraction, 42 + i)

        .treeAggregate((BDV.zeros[Double](n), 0.0, 0L))(

          seqOp = (c, v) => {

            // c: (grad, loss, count), v: (label, features)

            val l = gradient.compute(v._2, v._1, bcWeights.value, Vectors.fromBreeze(c._1))

            (c._1, c._2 + l, c._3 + 1)

          },

          combOp = (c1, c2) => {

            // c: (grad, loss, count)

            (c1._1 += c2._1, c1._2 + c2._2, c1._3 + c2._3)

          })

// 保存本次迭代误差值,以及更新weights权重向量。

      if (miniBatchSize > 0) {

        /**

         * NOTE(Xinghao): lossSum is computed using the weights from the previous iteration

         * and regVal is the regularization value computed in the previous iteration as well.

         */

// updater.compute更新weights矩阵和regVal(正则化项)。根据本轮迭代中的gradient和loss的变化以及正则化项计算更新之后的weights和regVal。 

        stochasticLossHistory.append(lossSum / miniBatchSize + regVal)

        val update = updater.compute(

          weights, Vectors.fromBreeze(gradientSum / miniBatchSize.toDouble), stepSize, i, regParam)

        weights = update._1

        regVal = update._2

      } else {

        logWarning(s"Iteration ($i/$numIterations). The size of sampled batch is zero")

      }

    }

 

    logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(

      stochasticLossHistory.takeRight(10).mkString(", ")))

 

    (weights, stochasticLossHistory.toArray)

 

  }

runMiniBatchSGD的输入、输出参数说明:

data 样本输入数据,格式 (label, [feature values])

gradient 梯度对象,用于对每个样本计算梯度及误差

updater 权重更新对象,用于每次更新权重

stepSize 初始步长

numIterations 迭代次数

regParam 正则化参数

miniBatchFraction 迭代因子,每次迭代参与计算的样本比例

返回结果(Vector, Array[Double]),第一个为权重,每二个为每次迭代的误差值。

在MiniBatchSGD中主要实现对输入数据集进行迭代抽样,通过使用LogisticGradient作为梯度下降算法,使用SquaredL2Updater作为更新算法,不断对抽样数据集进行迭代计算从而找出最优的特征权重向量解。在LinearRegressionWithSGD中定义如下:

  privateval gradient = new HingeGradient()

  privateval updater = new SquaredL2Updater()

  overrideval optimizer = new GradientDescent(gradient, updater)

    .setStepSize(stepSize)

    .setNumIterations(numIterations)

    .setRegParam(regParam)

    .setMiniBatchFraction(miniBatchFraction)

runMiniBatchSGD方法中调用了gradient.compute、updater.compute两个方法,其实现方法如下。

1.2.4 gradient & updater

1)gradient

//计算当前计算对象的类标签:(2 * label - 1.0)

//计算当前梯度:-(2y - 1)*x

//计算当前误差:(0, 1 - (2y - 1) (f_w(x)))

//计算权重的更新值

//返回当前训练对象的特征权重向量和误差

/**

 * :: DeveloperApi ::

 * Compute gradient and loss for a Hinge loss function, as used in SVM binary classification.

 * See also the documentation for the precise formulation.

 * NOTE: This assumes that the labels are {0,1}

 */

@DeveloperApi

class HingeGradient extends Gradient {

  overridedef compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = {

    val dotProduct = dot(data, weights)

    // Our loss function with {0, 1} labels is max(0, 1 - (2y - 1) (f_w(x)))

    // Therefore the gradient is -(2y - 1)*x

    val labelScaled = 2 * label - 1.0

    if (1.0 > labelScaled * dotProduct) {

      val gradient = data.copy

      scal(-labelScaled, gradient)

      (gradient, 1.0 - labelScaled * dotProduct)

    } else {

      (Vectors.sparse(weights.size, Array.empty, Array.empty), 0.0)

    }

  }

2)updater

//weihtsOld:上一次迭代计算后的特征权重向量

//gradient:本次迭代计算的特征权重向量

//stepSize:迭代步长

//iter:当前迭代次数

//regParam:正则参数 

//以当前迭代次数的平方根的倒数作为本次迭代趋近(下降)的因子  

//返回本次剃度下降后更新的特征权重向量  

//使用了L2 regularizationR(w) = 1/2 ||w||^2),weights更新规则为:

 

/**

 * :: DeveloperApi ::

 * Updater for L2 regularized problems.

 *          R(w) = 1/2 ||w||^2

 * Uses a step-size decreasing with the square root of the number of iterations.

 */

@DeveloperApi

class SquaredL2Updater extends Updater {

  overridedef compute(

      weightsOld: Vector,

      gradient: Vector,

      stepSize: Double,

      iter: Int,

      regParam: Double): (Vector, Double) = {

    // add up both updates from the gradient of the loss (= step) as well as

    // the gradient of the regularizer (= regParam * weightsOld)

    // w' = w - thisIterStepSize * (gradient + regParam * w)

    // w' = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient

    val thisIterStepSize = stepSize / math.sqrt(iter)

    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector

    brzWeights :*= (1.0 - thisIterStepSize * regParam)

    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)

    val norm = brzNorm(brzWeights, 2.0)

 

    (Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm)

  }

} 

1.3 Mllib SVM实例

1、数据

数据格式为:标签, 特征1 特征2 特征3……

0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252 159:252 160:237 182:54 183:227 184:253 185:252 186:239 187:233 188:252 189:57 190:6 208:10 209:60 210:224 211:252 212:253 213:252 214:202 215:84 216:252 217:253 218:122 236:163 237:252 238:252 239:252 240:253 241:252 242:252 243:96 244:189 245:253 246:167 263:51 264:238 265:253 266:253 267:190 268:114 269:253 270:228 271:47 272:79 273:255 274:168 290:48 291:238 292:252 293:252 294:179 295:12 296:75 297:121 298:21 301:253 302:243 303:50 317:38 318:165 319:253 320:233 321:208 322:84 329:253 330:252 331:165 344:7 345:178 346:252 347:240 348:71 349:19 350:28 357:253 358:252 359:195 372:57 373:252 374:252 375:63 385:253 386:252 387:195 400:198 401:253 402:190 413:255 414:253 415:196 427:76 428:246 429:252 430:112 441:253 442:252 443:148 455:85 456:252 457:230 458:25 467:7 468:135 469:253 470:186 471:12 483:85 484:252 485:223 494:7 495:131 496:252 497:225 498:71 511:85 512:252 513:145 521:48 522:165 523:252 524:173 539:86 540:253 541:225 548:114 549:238 550:253 551:162 567:85 568:252 569:249 570:146 571:48 572:29 573:85 574:178 575:225 576:253 577:223 578:167 579:56 595:85 596:252 597:252 598:252 599:229 600:215 601:252 602:252 603:252 604:196 605:130 623:28 624:199 625:252 626:252 627:253 628:252 629:252 630:233 631:145 652:25 653:128 654:252 655:253 656:252 657:141 658:37

1 159:124 160:253 161:255 162:63 186:96 187:244 188:251 189:253 190:62 214:127 215:251 216:251 217:253 218:62 241:68 242:236 243:251 244:211 245:31 246:8 268:60 269:228 270:251 271:251 272:94 296:155 297:253 298:253 299:189 323:20 324:253 325:251 326:235 327:66 350:32 351:205 352:253 353:251 354:126 378:104 379:251 380:253 381:184 382:15 405:80 406:240 407:251 408:193 409:23 432:32 433:253 434:253 435:253 436:159 460:151 461:251 462:251 463:251 464:39 487:48 488:221 489:251 490:251 491:172 515:234 516:251 517:251 518:196 519:12 543:253 544:251 545:251 546:89 570:159 571:255 572:253 573:253 574:31 597:48 598:228 599:253 600:247 601:140 602:8 625:64 626:251 627:253 628:220 653:64 654:251 655:253 656:220 681:24 682:193 683:253 684:220

…… 

2、代码

//1 读取样本数据

  valdata_path = "/user/tmp/sample_libsvm_data.txt"

  valexamples = MLUtils.loadLibSVMFile(sc, data_path).cache() 

  //2 样本数据划分训练样本与测试样本

  valsplits = examples.randomSplit(Array(0.6, 0.4), seed = 11L)

  valtraining = splits(0).cache()

  valtest = splits(1)

  valnumTraining = training.count()

  valnumTest = test.count()

  println(s"Training: $numTraining, test: $numTest.") 

  //3 新建SVM模型,并设置训练参数

  valnumIterations = 1000

  valstepSize = 1

  valminiBatchFraction = 1.0

  valmodel = SVMWithSGD.train(training, numIterations, stepSize, miniBatchFraction)

  //4 对测试样本进行测试

  valprediction = model.predict(test.map(_.features))

  valpredictionAndLabel = prediction.zip(test.map(_.label)) 

  //5 计算测试误差

  valmetrics = new MulticlassMetrics(predictionAndLabel)

  valprecision = metrics.precision

  println("Precision = " + precision)

 

发布了54 篇原创文章 · 获赞 19 · 访问量 41万+
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!