[Python笔记]第八篇:模块

北城以北 提交于 2020-03-13 14:36:59

 本篇主要内容:python常用模块用法介绍

什么是模块

  模块,用一大段代码实现了某个功能的代码集合。 

  类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.py文件中),n个 .py 文件组成的代码集合就称为模块。

如:os 是系统相关的模块;file是文件操作相关的模块

模块分类:

  • 自定义模块
  • 开源模块
  • 内置模块

 

模块导入

则可以采用这几种方式导入模块,这些方法通用于导入自定义模块/开源模块/内置模块

import module
from module.xx.xx import xx
from module.xx.xx import xx as rename 
from module.xx.xx import *

 

模块导入举例

  下面介绍如何导入一个自定义模块:

  如图所示下面这个名为"cnblogs"的项目里面有一个文件夹叫做"libs"和一个叫做"index"的py文件

假如有个叫index.py的主程序,需要调用libs文件夹里面的功能的话,那么他就要在主程序里import libs里面存在的各个功能模块

from libs import db
from libs import storage

  

 

#!/usr/bin/env python
#-*- coding: utf-8 -*-

def mysql(ns):
    print("mysql host is %s" %ns)

def oracle(ns):
    print("oracle host is %s" %ns)

def redis(ns):
    print("redis host is %s" %ns)

def mogodb(ns):
    print("mogodb host is %s" %ns)
db.py
#!/usr/bin/env python
#-*- coding: utf-8 -*-

def node_us(ns):
    print("node1 host is %s" %ns)

def node_eu(ns):
    print("node2 host is %s" %ns)

def node_au(ns):
    print("node3 host is %s" %ns)
storage.py
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from libs import db
from libs import storage

db1 = db.mogodb("172.0.0.100")

db2 = db.redis("172.0.0.101")

s1 = storage.node_eu("10.10.10.1")

s2 = storage.node_us("10.10.10.3")

# 运行结果
"""
C:\Python35\python3.exe C:/Users/cnblogs/index.py
mogodb host is 172.0.0.100
redis host is 172.0.0.101
node2 host is 10.10.10.1
node1 host is 10.10.10.3

Process finished with exit code 0
"""
index.py

 

新增模块路径

  那么问题来了,导入模块时是根据那个路径作为基准来进行的呢?即:sys.path

import sys
print(sys.path)

结果:
['C:\\Python35\\python35.zip', 'C:\\Python35\\DLLs', 'C:\\Python35\\lib', 'C:\\Python35', 'C:\\Python35\\lib\\site-packages']

 如果sys.path路径列表没有你想要的路径,可以通过 sys.path.append('路径') 添加。 

import sys
import os
project_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(project_path)

 

# 配置文件里面
settings.py


import os

BASE_DIR = os.path.dirname(os.path.dirname(__file__))   # .

HOME_DIR = os.path.join(BASE_DIR, "home")

BIN_DIR = os.path.join(BASE_DIR, "bin")

LIB_DIR = os.path.join(BASE_DIR, "lib")

LOG_DIR = os.path.join(BASE_DIR, "log")


# 要引用配置的地方
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from config import settings


settings.HOME_DIR   # 调用"配置文件"
配置文件实例

 

开源模块安装

要使用开源模块则需要提前安装,python提供了两种安装方式:

源码安装

下载源码
linux用终端;Windows用cmd切换到源码所属路径
python setup.py

  

包管理工具安装 

python3 -m pip install module 

  

内置模块

内置模块是Python自带的功能,在使用内置模块相应的功能时,需要【先导入】再【使用】

1.sys

  用于提供对Python解释器相关的操作:

sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n)        退出程序,正常退出时exit(0)
sys.version        获取Python解释程序的版本信息
sys.maxint         最大的Int值
sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform       返回操作系统平台名称
sys.stdin          输入相关
sys.stdout         输出相关
sys.stderror       错误相关

  

'''百分比进度条'''
import sys
import time

for i in range(101):
    sys.stdout.write('\r') # 换行符
    sys.stdout.write('%s %%|%s' % (int(i / 100 * 100), int(i / 100 * 100) * '■'))
    sys.stdout.flush()    #打印一次清空一次
    time.sleep(0.05)
sys模块打印进度条

 

2.os

用于提供系统级别的操作:

os.getcwd()                 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")         改变当前脚本工作目录;相当于shell下cd
os.curdir                   返回当前目录: ('.')
os.pardir                   获取当前目录的父目录字符串名:('..')
os.makedirs('dir1/dir2')    可生成多层递归目录
os.removedirs('dirname1')   若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')         生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')         删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')       列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove()                 删除一个文件
os.rename("oldname","new")  重命名文件/目录
os.stat('path/filename')    获取文件/目录信息
os.sep                      操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep                  当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep                  用于分割文件路径的字符串
os.name                     字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command")   运行shell命令,直接显示
os.environ                  获取系统环境变量
os.path.abspath(path)       返回path规范化的绝对路径
os.path.split(path)         将path分割成目录和文件名二元组返回
os.path.dirname(path)       返回path的目录。其实就是os.path.split(path)的第一个元素
os.path.basename(path)      返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素
os.path.exists(path)        如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path)         如果path是绝对路径,返回True
os.path.isfile(path)        如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path)         如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path)      返回path所指向的文件或者目录的最后存取时间
os.path.getmtime(path)      返回path所指向的文件或者目录的最后修改时间

  

3.hashlib

用于加密相关的操作,代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法

import hashlib
 
# ######## md5 ########
hash = hashlib.md5()
# help(hash.update)
hash.update(bytes('admin', encoding='utf-8'))
print(hash.hexdigest())
print(hash.digest())
 
 
######## sha1 ########
 
hash = hashlib.sha1()
hash.update(bytes('admin', encoding='utf-8'))
print(hash.hexdigest())
 
# ######## sha256 ########
 
hash = hashlib.sha256()
hash.update(bytes('admin', encoding='utf-8'))
print(hash.hexdigest())
 
 
# ######## sha384 ########
 
hash = hashlib.sha384()
hash.update(bytes('admin', encoding='utf-8'))
print(hash.hexdigest())
 
# ######## sha512 ########
 
hash = hashlib.sha512()
hash.update(bytes('admin', encoding='utf-8'))
print(hash.hexdigest())

  

以上加密算法虽然依然非常厉害,但时候存在缺陷,即:通过撞库可以反解。所以,有必要对加密算法中添加自定义key再来做加密。

import hashlib
 
# ######## md5 ########
 
hash = hashlib.md5(bytes('898oaFs09f',encoding="utf-8"))
hash.update(bytes('admin',encoding="utf-8"))
print(hash.hexdigest())

  

python内置还有一个 hmac 模块,它内部对我们创建 key 和 内容 进行进一步的处理然后再加密

import hmac
 
h = hmac.new(bytes('898oaFs09f',encoding="utf-8"))
h.update(bytes('admin',encoding="utf-8"))
print(h.hexdigest())

  

#!/usr/bin/env python
#-*- coding: utf-8 -*-

import hashlib

def md5_hash(arg):
    ooo = hashlib.md5(bytes('cnblogs', encoding='utf-8'))  # 创建一个加盐的加密对象
    ooo.update(bytes(arg, encoding='utf-8'))                # 加密字符串"123"
    return ooo.hexdigest()

def login(user, pwd):
    with open("db", "r", encoding="utf-8") as f:
        for line in f:
            u, p = line.strip().split(":")
            if u == user and p == md5_hash(pwd):
                return True

def register(user, pwd):
    with open("db", "a", encoding="utf-8") as f:
        temp = user + ":" + md5_hash(pwd)
        f.write(temp)

i = input("1,登录; 2,注册")

if i == "1":
    user = input("用户名:")
    pwd = input("密码:")
    r = login(user, pwd)
    if r:
        print("登录成功")

    else:
        print("登录失败")

elif i == "2":
    user = input("用户名:")
    pwd = input("密码:")
    register(user, pwd)
hash验证登录demo

 

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import hashlib
import sys


def md5sum(filename):
    md5 = hashlib.md5()
    with open(filename, 'rb') as f:
        for chunk in iter(lambda: f.read(8192), b''):
            md5.update(chunk)
    return md5.hexdigest()

if __name__ == "__main__":
    file_md5 = md5sum(sys.argv[1])
    print(file_md5)
md5sum文件校验

 

4.random

import random
 
print(random.random())
print(random.randint(1, 2))
print(random.randrange(1, 10))

  

import random

temp = ""
for i in range(6):
    num = random.randrange(0,4)
    if num == 3 or num == 1:
        rad1 = random.randrange(1,11)
        temp += str(rad1)
    else:
        rad2 = random.randrange(65,91)
        c2 = chr(rad2)
        temp += c2

print(temp)
随机验证码

  

 5.re模块

请移步第九篇:re正则表达式

 

6.序列化

Python中用于序列化的两个模块

  • json     用于【字符串】和 【python基本数据类型】 间进行转换
  • pickle   用于【python特有的类型】 和 【python基本数据类型】间进行转换

 

json模块提供了四个功能:dumps、dump、loads、load

dump   序列化python数据类型对象为JOSN格式的类文件对象,dump 列表-> 字符串 -> 类文件对象
load     从josn类文件对象中反序列为PYTHON数据类型对象, 打开文件->读取内容-> python数据类型如(列表、字典)

dumps  序列化python数据类型对象为字符串格式的josn对象,python数据类型如(列表、字典)->JOSN字符串
loads  将josn字符串反序列化为PYTHON数据类型,josn字符-> python数据类型如(列表、字典)


pickle模块提供了四个功能:dumps、dump、loads、load

pickle.dump(obj,file)   直接把对象序列化后写入文件
pickle.load(file)           从文件中反序列化出对象

pickle.dumps(obj)           把任意对象序列化成一个str,然后,把这个str写入文件
pickle.loads(string)      反序列化出对象

 

用json处理一个字典

dumps

#!/usr/bin/env python
#-*- coding: utf-8 -*-
import json

accounts_dic = {
    1000: {
        'name':'Da Wang',
        'email': 'jinjiaodawang@126.com',
        'passwd': '123456',
        'balance': 15000,
        'phone': 13800138000
    }
}
# 使用json.dumps序列化一个字典
accounts_json = json.dumps(accounts_dic)
print(accounts_json, type(accounts_json))

# 使用json.loads反序列化一个json
accounts_dic_new = json.loads(accounts_json)
print(accounts_dic_new, type(accounts_dic_new))

 

dump 

import json
user_dic = {
    "name": "Judy",
    "age": 21,
    "gender": "female"
}
json.dump(user_dic, open('userinfo.json', 'w'))   # 序列化字典到文件
new_dic = json.load(open('userinfo.json', 'r'))   # 从文件反序列化字典

  

 

用pickle处理一个字典并写回文件

#!/usr/bin/env python
#-*- coding: utf-8 -*-
import pickle

accounts = {
    1000: {
        'name':'Da Wang',
        'email': 'jinjiaodawang@126.com',
        'passwd': '123456',
        'balance': 15000,
        'phone': 13800138000
    },
    1001: {
        'name': 'Xiao Guo',
        'email': 'xguo@126.com',
        'passwd': '123123',
        'balance': -15000,
        'phone': 13401760101
    },
}

f = open('account.db','wb')
f.write(pickle.dumps(accounts))
f.closed

 

7.xml

XML是实现不同语言或程序之间进行数据交换的协议,XML文件格式如下:

<data>
    <country name="Liechtenstein">
        <rank updated="yes">2</rank>
        <year>2023</year>
        <gdppc>141100</gdppc>
        <neighbor direction="E" name="Austria" />
        <neighbor direction="W" name="Switzerland" />
    </country>
    <country name="Singapore">
        <rank updated="yes">5</rank>
        <year>2026</year>
        <gdppc>59900</gdppc>
        <neighbor direction="N" name="Malaysia" />
    </country>
    <country name="Panama">
        <rank updated="yes">69</rank>
        <year>2026</year>
        <gdppc>13600</gdppc>
        <neighbor direction="W" name="Costa Rica" />
        <neighbor direction="E" name="Colombia" />
    </country>
</data>

 

解析xml

 

from xml.etree import ElementTree as ET


# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read()

# 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)

利用ElementTree.XML将字符串解析成xml对象

 

from xml.etree import ElementTree as ET

# 直接解析xml文件
tree = ET.parse("xo.xml")

# 获取xml文件的根节点
root = tree.getroot()

利用ElementTree.parse将文件直接解析成xml对象

 

操作xml

XML格式类型是节点嵌套节点,对于每一个节点均有以下功能,以便对当前节点进行操作

class Element:
    """An XML element.

    This class is the reference implementation of the Element interface.

    An element's length is its number of subelements.  That means if you
    want to check if an element is truly empty, you should check BOTH
    its length AND its text attribute.

    The element tag, attribute names, and attribute values can be either
    bytes or strings.

    *tag* is the element name.  *attrib* is an optional dictionary containing
    element attributes. *extra* are additional element attributes given as
    keyword arguments.

    Example form:
        <tag attrib>text<child/>...</tag>tail

    """

    当前节点的标签名
    tag = None
    """The element's name."""

    当前节点的属性

    attrib = None
    """Dictionary of the element's attributes."""

    当前节点的内容
    text = None
    """
    Text before first subelement. This is either a string or the value None.
    Note that if there is no text, this attribute may be either
    None or the empty string, depending on the parser.

    """

    tail = None
    """
    Text after this element's end tag, but before the next sibling element's
    start tag.  This is either a string or the value None.  Note that if there
    was no text, this attribute may be either None or an empty string,
    depending on the parser.

    """

    def __init__(self, tag, attrib={}, **extra):
        if not isinstance(attrib, dict):
            raise TypeError("attrib must be dict, not %s" % (
                attrib.__class__.__name__,))
        attrib = attrib.copy()
        attrib.update(extra)
        self.tag = tag
        self.attrib = attrib
        self._children = []

    def __repr__(self):
        return "<%s %r at %#x>" % (self.__class__.__name__, self.tag, id(self))

    def makeelement(self, tag, attrib):
        创建一个新节点
        """Create a new element with the same type.

        *tag* is a string containing the element name.
        *attrib* is a dictionary containing the element attributes.

        Do not call this method, use the SubElement factory function instead.

        """
        return self.__class__(tag, attrib)

    def copy(self):
        """Return copy of current element.

        This creates a shallow copy. Subelements will be shared with the
        original tree.

        """
        elem = self.makeelement(self.tag, self.attrib)
        elem.text = self.text
        elem.tail = self.tail
        elem[:] = self
        return elem

    def __len__(self):
        return len(self._children)

    def __bool__(self):
        warnings.warn(
            "The behavior of this method will change in future versions.  "
            "Use specific 'len(elem)' or 'elem is not None' test instead.",
            FutureWarning, stacklevel=2
            )
        return len(self._children) != 0 # emulate old behaviour, for now

    def __getitem__(self, index):
        return self._children[index]

    def __setitem__(self, index, element):
        # if isinstance(index, slice):
        #     for elt in element:
        #         assert iselement(elt)
        # else:
        #     assert iselement(element)
        self._children[index] = element

    def __delitem__(self, index):
        del self._children[index]

    def append(self, subelement):
        为当前节点追加一个子节点
        """Add *subelement* to the end of this element.

        The new element will appear in document order after the last existing
        subelement (or directly after the text, if it's the first subelement),
        but before the end tag for this element.

        """
        self._assert_is_element(subelement)
        self._children.append(subelement)

    def extend(self, elements):
        为当前节点扩展 n 个子节点
        """Append subelements from a sequence.

        *elements* is a sequence with zero or more elements.

        """
        for element in elements:
            self._assert_is_element(element)
        self._children.extend(elements)

    def insert(self, index, subelement):
        在当前节点的子节点中插入某个节点,即:为当前节点创建子节点,然后插入指定位置
        """Insert *subelement* at position *index*."""
        self._assert_is_element(subelement)
        self._children.insert(index, subelement)

    def _assert_is_element(self, e):
        # Need to refer to the actual Python implementation, not the
        # shadowing C implementation.
        if not isinstance(e, _Element_Py):
            raise TypeError('expected an Element, not %s' % type(e).__name__)

    def remove(self, subelement):
        在当前节点在子节点中删除某个节点
        """Remove matching subelement.

        Unlike the find methods, this method compares elements based on
        identity, NOT ON tag value or contents.  To remove subelements by
        other means, the easiest way is to use a list comprehension to
        select what elements to keep, and then use slice assignment to update
        the parent element.

        ValueError is raised if a matching element could not be found.

        """
        # assert iselement(element)
        self._children.remove(subelement)

    def getchildren(self):
        获取所有的子节点(废弃)
        """(Deprecated) Return all subelements.

        Elements are returned in document order.

        """
        warnings.warn(
            "This method will be removed in future versions.  "
            "Use 'list(elem)' or iteration over elem instead.",
            DeprecationWarning, stacklevel=2
            )
        return self._children

    def find(self, path, namespaces=None):
        获取第一个寻找到的子节点
        """Find first matching element by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return the first matching element, or None if no element was found.

        """
        return ElementPath.find(self, path, namespaces)

    def findtext(self, path, default=None, namespaces=None):
        获取第一个寻找到的子节点的内容
        """Find text for first matching element by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *default* is the value to return if the element was not found,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return text content of first matching element, or default value if
        none was found.  Note that if an element is found having no text
        content, the empty string is returned.

        """
        return ElementPath.findtext(self, path, default, namespaces)

    def findall(self, path, namespaces=None):
        获取所有的子节点
        """Find all matching subelements by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Returns list containing all matching elements in document order.

        """
        return ElementPath.findall(self, path, namespaces)

    def iterfind(self, path, namespaces=None):
        获取所有指定的节点,并创建一个迭代器(可以被for循环)
        """Find all matching subelements by tag name or path.

        *path* is a string having either an element tag or an XPath,
        *namespaces* is an optional mapping from namespace prefix to full name.

        Return an iterable yielding all matching elements in document order.

        """
        return ElementPath.iterfind(self, path, namespaces)

    def clear(self):
        清空节点
        """Reset element.

        This function removes all subelements, clears all attributes, and sets
        the text and tail attributes to None.

        """
        self.attrib.clear()
        self._children = []
        self.text = self.tail = None

    def get(self, key, default=None):
        获取当前节点的属性值
        """Get element attribute.

        Equivalent to attrib.get, but some implementations may handle this a
        bit more efficiently.  *key* is what attribute to look for, and
        *default* is what to return if the attribute was not found.

        Returns a string containing the attribute value, or the default if
        attribute was not found.

        """
        return self.attrib.get(key, default)

    def set(self, key, value):
        为当前节点设置属性值
        """Set element attribute.

        Equivalent to attrib[key] = value, but some implementations may handle
        this a bit more efficiently.  *key* is what attribute to set, and
        *value* is the attribute value to set it to.

        """
        self.attrib[key] = value

    def keys(self):
        获取当前节点的所有属性的 key

        """Get list of attribute names.

        Names are returned in an arbitrary order, just like an ordinary
        Python dict.  Equivalent to attrib.keys()

        """
        return self.attrib.keys()

    def items(self):
        获取当前节点的所有属性值,每个属性都是一个键值对
        """Get element attributes as a sequence.

        The attributes are returned in arbitrary order.  Equivalent to
        attrib.items().

        Return a list of (name, value) tuples.

        """
        return self.attrib.items()

    def iter(self, tag=None):
        在当前节点的子孙中根据节点名称寻找所有指定的节点,并返回一个迭代器(可以被for循环)。
        """Create tree iterator.

        The iterator loops over the element and all subelements in document
        order, returning all elements with a matching tag.

        If the tree structure is modified during iteration, new or removed
        elements may or may not be included.  To get a stable set, use the
        list() function on the iterator, and loop over the resulting list.

        *tag* is what tags to look for (default is to return all elements)

        Return an iterator containing all the matching elements.

        """
        if tag == "*":
            tag = None
        if tag is None or self.tag == tag:
            yield self
        for e in self._children:
            yield from e.iter(tag)

    # compatibility
    def getiterator(self, tag=None):
        # Change for a DeprecationWarning in 1.4
        warnings.warn(
            "This method will be removed in future versions.  "
            "Use 'elem.iter()' or 'list(elem.iter())' instead.",
            PendingDeprecationWarning, stacklevel=2
        )
        return list(self.iter(tag))

    def itertext(self):
        在当前节点的子孙中根据节点名称寻找所有指定的节点的内容,并返回一个迭代器(可以被for循环)。
        """Create text iterator.

        The iterator loops over the element and all subelements in document
        order, returning all inner text.

        """
        tag = self.tag
        if not isinstance(tag, str) and tag is not None:
            return
        if self.text:
            yield self.text
        for e in self:
            yield from e.itertext()
            if e.tail:
                yield e.tail
节点功能一览表

 

由于 每个节点 都具有以上的方法,并且在上一步骤中解析时均得到了root(xml文件的根节点),so   可以利用以上方法进行操作xml文件。

a. 遍历XML文档的所有内容

from xml.etree import ElementTree as ET

############ 解析方式一 ############
"""
# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read()

# 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)
"""
############ 解析方式二 ############

# 直接解析xml文件
tree = ET.parse("xo.xml")

# 获取xml文件的根节点
root = tree.getroot()


### 操作

# 顶层标签
print(root.tag)


# 遍历XML文档的第二层
for child in root:
    # 第二层节点的标签名称和标签属性
    print(child.tag, child.attrib)
    # 遍历XML文档的第三层
    for i in child:
        # 第二层节点的标签名称和内容
        print(i.tag,i.text)

 

b、遍历XML中指定的节点

from xml.etree import ElementTree as ET

############ 解析方式一 ############
"""
# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read()

# 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)
"""
############ 解析方式二 ############

# 直接解析xml文件
tree = ET.parse("xo.xml")

# 获取xml文件的根节点
root = tree.getroot()


### 操作

# 顶层标签
print(root.tag)


# 遍历XML中所有的year节点
for node in root.iter('year'):
    # 节点的标签名称和内容
    print(node.tag, node.text)

 

c、修改节点内容

由于修改的节点时,均是在内存中进行,其不会影响文件中的内容。所以,如果想要修改,则需要重新将内存中的内容写到文件。

 

from xml.etree import ElementTree as ET

############ 解析方式一 ############

# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read()

# 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)

############ 操作 ############

# 顶层标签
print(root.tag)

# 循环所有的year节点
for node in root.iter('year'):
    # 将year节点中的内容自增一
    new_year = int(node.text) + 1
    node.text = str(new_year)

    # 设置属性
    node.set('name', 'alex')
    node.set('age', '18')
    # 删除属性
    del node.attrib['name']


############ 保存文件 ############
tree = ET.ElementTree(root)
tree.write("newnew.xml", encoding='utf-8')

解析字符串方式,修改,保存

 

from xml.etree import ElementTree as ET

############ 解析方式二 ############

# 直接解析xml文件
tree = ET.parse("xo.xml")

# 获取xml文件的根节点
root = tree.getroot()

############ 操作 ############

# 顶层标签
print(root.tag)

# 循环所有的year节点
for node in root.iter('year'):
    # 将year节点中的内容自增一
    new_year = int(node.text) + 1
    node.text = str(new_year)

    # 设置属性
    node.set('name', 'alex')
    node.set('age', '18')
    # 删除属性
    del node.attrib['name']


############ 保存文件 ############
tree.write("newnew.xml", encoding='utf-8')

解析文件方式,修改,保存

 

d、删除节点

from xml.etree import ElementTree as ET

############ 解析字符串方式打开 ############

# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read()

# 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)

############ 操作 ############

# 顶层标签
print(root.tag)

# 遍历data下的所有country节点
for country in root.findall('country'):
    # 获取每一个country节点下rank节点的内容
    rank = int(country.find('rank').text)

    if rank > 50:
        # 删除指定country节点
        root.remove(country)

############ 保存文件 ############
tree = ET.ElementTree(root)
tree.write("newnew.xml", encoding='utf-8')

解析字符串方式打开,删除,保存

 

from xml.etree import ElementTree as ET

############ 解析文件方式 ############

# 直接解析xml文件
tree = ET.parse("xo.xml")

# 获取xml文件的根节点
root = tree.getroot()

############ 操作 ############

# 顶层标签
print(root.tag)

# 遍历data下的所有country节点
for country in root.findall('country'):
    # 获取每一个country节点下rank节点的内容
    rank = int(country.find('rank').text)

    if rank > 50:
        # 删除指定country节点
        root.remove(country)

############ 保存文件 ############
tree.write("newnew.xml", encoding='utf-8')

解析文件方式打开,删除,保存

 

创建xml文档

from xml.etree import ElementTree as ET


# 创建根节点
root = ET.Element("famliy")


# 创建节点大儿子
son1 = ET.Element('son', {'name': '儿1'})
# 创建小儿子
son2 = ET.Element('son', {"name": '儿2'})

# 在大儿子中创建两个孙子
grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson2 = ET.Element('grandson', {'name': '儿12'})
son1.append(grandson1)
son1.append(grandson2)


# 把儿子添加到根节点中
root.append(son1)
root.append(son1)

tree = ET.ElementTree(root)
tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)

创建方式(一)

 

from xml.etree import ElementTree as ET

# 创建根节点
root = ET.Element("famliy")


# 创建大儿子
# son1 = ET.Element('son', {'name': '儿1'})
son1 = root.makeelement('son', {'name': '儿1'})
# 创建小儿子
# son2 = ET.Element('son', {"name": '儿2'})
son2 = root.makeelement('son', {"name": '儿2'})

# 在大儿子中创建两个孙子
# grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson1 = son1.makeelement('grandson', {'name': '儿11'})
# grandson2 = ET.Element('grandson', {'name': '儿12'})
grandson2 = son1.makeelement('grandson', {'name': '儿12'})

son1.append(grandson1)
son1.append(grandson2)


# 把儿子添加到根节点中
root.append(son1)
root.append(son1)

tree = ET.ElementTree(root)
tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)

创建方式(二)

 

from xml.etree import ElementTree as ET


# 创建根节点
root = ET.Element("famliy")


# 创建节点大儿子
son1 = ET.SubElement(root, "son", attrib={'name': '儿1'})
# 创建小儿子
son2 = ET.SubElement(root, "son", attrib={"name": "儿2"})

# 在大儿子中创建一个孙子
grandson1 = ET.SubElement(son1, "age", attrib={'name': '儿11'})
grandson1.text = '孙子'


et = ET.ElementTree(root)  #生成文档对象
et.write("test.xml", encoding="utf-8", xml_declaration=True, short_empty_elements=False)

创建方式(三)

 

 

由于原生保存的XML时默认无缩进,如果想要设置缩进的话, 需要修改保存方式(从 xml.dom 导入 minidom):

from xml.etree import ElementTree as ET
from xml.dom import minidom


def prettify(elem):
    """将节点转换成字符串,并添加缩进。
    """
    rough_string = ET.tostring(elem, 'utf-8')
    reparsed = minidom.parseString(rough_string)
    return reparsed.toprettyxml(indent="\t")

# 创建根节点
root = ET.Element("famliy")


# 创建大儿子
# son1 = ET.Element('son', {'name': '儿1'})
son1 = root.makeelement('son', {'name': '儿1'})
# 创建小儿子
# son2 = ET.Element('son', {"name": '儿2'})
son2 = root.makeelement('son', {"name": '儿2'})

# 在大儿子中创建两个孙子
# grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson1 = son1.makeelement('grandson', {'name': '儿11'})
# grandson2 = ET.Element('grandson', {'name': '儿12'})
grandson2 = son1.makeelement('grandson', {'name': '儿12'})

son1.append(grandson1)
son1.append(grandson2)


# 把儿子添加到根节点中
root.append(son1)
root.append(son1)


raw_str = prettify(root)

f = open("xxxoo.xml",'w',encoding='utf-8')
f.write(raw_str)
f.close()

 

 

xml命名空间

命名空间是为了解决在 XML 中元素名称命名冲突的情况

详细请看这里

from xml.etree import ElementTree as ET

ET.register_namespace('com',"http://www.company.com") #some name

# build a tree structure
root = ET.Element("{http://www.company.com}STUFF")
body = ET.SubElement(root, "{http://www.company.com}MORE_STUFF", attrib={"{http://www.company.com}hhh": "123"})
body.text = "STUFF EVERYWHERE!"

# wrap it in an ElementTree instance, and save as XML
tree = ET.ElementTree(root)

tree.write("page.xml",
           xml_declaration=True,
           encoding='utf-8',
           method="xml")

命名空间

 

8.time

时间相关的操作,时间有三种表示方式:

  • 时间戳               1970年1月1日之后的秒,即:time.time()
  • 格式化的字符串    2014-11-11 11:11,    即:time.strftime('%Y-%m-%d')
  • 结构化时间          元组包含了:年、日、星期等... time.struct_time    即:time.localtime()
print time.time()
print time.mktime(time.localtime())
  
print time.gmtime()    #可加时间戳参数
print time.localtime() #可加时间戳参数
print time.strptime('2014-11-11', '%Y-%m-%d')
  
print time.strftime('%Y-%m-%d') #默认当前时间
print time.strftime('%Y-%m-%d',time.localtime()) #默认当前时间
print time.asctime()
print time.asctime(time.localtime())
print time.ctime(time.time())
  
import datetime
'''
datetime.date:表示日期的类。常用的属性有year, month, day
datetime.time:表示时间的类。常用的属性有hour, minute, second, microsecond
datetime.datetime:表示日期时间
datetime.timedelta:表示时间间隔,即两个时间点之间的长度
timedelta([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, weeks]]]]]]])
strftime("%Y-%m-%d")
'''
import datetime
print datetime.datetime.now()
print datetime.datetime.now() - datetime.timedelta(days=5)

  

时间对象

 

time格式互转图示 

configparser

configparser用于处理特定格式的文件,其本质上是利用open来操作文件。

 

[nginx]
db = "mysql"

[httpd]
ip = "10.10.10.1"
db = "oracle"

[iis]
ip = 172.0.0.22

# 要处理的文件格式

 

#!/usr/bin/env python
#-*- coding: utf-8 -*-
import configparser

con = configparser.ConfigParser()
# con对象的read功能, 打开文件, 读取文件, 放入内存
con.read('config', encoding='utf-8')
# con对象的sections, 内存中寻找所有的节点
result = con.sections()
print(result)

# 获取指定节点下面的键值对
result1 = con.items('httpd')
print(result1)

# 获取指定节点下面的所有键
ret = con.options("nginx")
print(ret)

# 获取指定节点下的指定value值
result2 = con.get('nginx', 'ip')
print(result2)



# 检查节点是否存在
print(con.has_section('nginx'))



# **********************************
# 添加删除节点
# 添加节点
# con.add_section('iis')
# con.write(open('config', 'w'))

# 删除节点
# con.remove_section('iis')
# con.write(open('config', 'w'))



# **********************************
# 检查 删除 设置指定节点内的键值对
# 检查
print(con.has_option('nginx', 'ip'))

# 删除
con.remove_option('nginx', 'ip')
# con.write(open('config', 'w'))

# 设置
con.set('iis', 'ip', '172.0.0.22')
con.write(open('config', 'w'))

  

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!