题目
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_ (data_structure)) One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its lef subtree.
Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.
Sample Input 1:
8
98 72 86 60 65 12 23 50
Sample Output 1:
98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap
Sample Input 2:
8
8 38 25 58 52 82 70 60
Sample Output 2:
8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap
Sample Input 3:
8
10 28 15 12 34 9 8 56
Sample Output 3:
10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
题目分析
已知完全二叉树层序序列,打印所有路径(从根节点到叶子节点)并判断是否为堆,为大顶堆还是小顶堆
解题思路
- 打印路径
思路01:dfs深度优先遍历,用整型数组path[n]记录路径进行回溯
思路02:dfs深度优先遍历,用vectorvin链表记录路径进行回溯 - 判断是否为堆,为大顶堆还是小顶堆
思路01:递归判断,用父节点与其左右子节点进行比较判断
思路02:for循环,用所有子节点与其父节点进行比较判断
Code
Code 01
#include <iostream> using namespace std; /* 利用数组回溯 */ int level[1001],path[1001]; int n; void printPath(int pin) { for(int i=0; i<=pin; i++) { printf("%d",path[i]); printf("%s",i==pin?"\n":" "); } } void dfs(int vin, int pin) { path[pin]=level[vin]; if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n printPath(pin); return; } else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出 printPath(pin+1); return; } else { dfs(2*vin+2,pin+1); dfs(2*vin+1,pin+1); } } bool isMaxHeap(int vin) { if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n if(2*vin+1<n&&level[2*vin+1]>level[vin])return false; if(2*vin+2<n&&level[2*vin+2]>level[vin])return false; return isMaxHeap(2*vin+1)&&isMaxHeap(2*vin+2); } bool isMinHeap(int vin) { if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n if(2*vin+1<n&&level[2*vin+1]<level[vin])return false; if(2*vin+2<n&&level[2*vin+2]<level[vin])return false; return isMinHeap(2*vin+1)&&isMinHeap(2*vin+2); } int main(int argc,char * argv[]) { scanf("%d",&n); for(int i=0; i<n; i++) { scanf("%d",&level[i]); } dfs(0,0); if(isMaxHeap(0)) { printf("Max Heap\n"); } else if(isMinHeap(0)) { printf("Min Heap\n"); } else { printf("Not Heap\n"); } return 0; }
Code 02
#include <iostream> #include <vector> using namespace std; /* 利用链表回溯 */ int level[1001]; vector<int> path; int n,isMax=1,isMin=1; void printPath() { for(int i=0; i<path.size(); i++) { printf("%d",path[i]); printf("%s",i==pin?"\n":" "); } } void dfs(int vin) { if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n printPath(); } else if(2*vin+2>=n) {//左子节点非NULL 右子节点为NULL path.push_back(level[2*vin+1]); printPath(); path.pop_back(); } else { path.push_back(level[2*vin+2]); dfs(2*vin+2); path.pop_back(); path.push_back(level[2*vin+1]); dfs(2*vin+1); path.pop_back(); } } int main(int argc,char * argv[]) { scanf("%d",&n); for(int i=0; i<n; i++) { scanf("%d",&level[i]); } path.push_back(level[0]); dfs(0); for(int i=1;i<n;i++){ if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i] if(level[(i-1)/2]<level[i])isMax=0; } if(isMax==1) { printf("Max Heap\n"); } else if(isMin==1) { printf("Min Heap\n"); } else { printf("Not Heap\n"); } return 0; }
Code 03
#include <iostream> using namespace std; /* 利用数组回溯 */ int level[1001],path[1001]; int n,isMax=1,isMin=1; void printPath(int pin) { for(int i=0; i<=pin; i++) { printf("%d",path[i]); printf("%s",i==pin?"\n":" "); } } void dfs(int vin, int pin) { path[pin]=level[vin]; if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n printPath(pin); return; } else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出 printPath(pin+1); return; } else { dfs(2*vin+2,pin+1); dfs(2*vin+1,pin+1); } } int main(int argc,char * argv[]) { scanf("%d",&n); for(int i=0; i<n; i++) { scanf("%d",&level[i]); } dfs(0,0); for(int i=1;i<n;i++){ if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i] if(level[(i-1)/2]<level[i])isMax=0; } if(isMax==1) { printf("Max Heap\n"); } else if(isMin==1) { printf("Min Heap\n"); } else { printf("Not Heap\n"); } return 0; }
来源:https://www.cnblogs.com/houzm/p/12344810.html