简介
在Eigen内,有Matrix,vector进行线性代数的相关运算,但也需要执行对矩阵内的系数的相关操作时,这是正常的功能需求。Eigen中的Array类就是满足此需求的。
Array 定义
和前面介绍的Matrix和Vector类似,Array类也是一个模板类
/** \class Array
* \ingroup Core_Module
*
* \brief General-purpose arrays with easy API for coefficient-wise operations
*
* The %Array class is very similar to the Matrix class. It provides
* general-purpose one- and two-dimensional arrays. The difference between the
* %Array and the %Matrix class is primarily in the API: the API for the
* %Array class provides easy access to coefficient-wise operations, while the
* API for the %Matrix class provides easy access to linear-algebra
* operations.
*
* See documentation of class Matrix for detailed information on the template parameters
* storage layout.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
*
* \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
同样,Eigen也使用macro
为Array定义了一些快捷简单Array类型。如下:
/** \defgroup arraytypedefs Global array typedefs
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common 1D and 2D array types.
*
* The general patterns are the following:
*
* \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
*
* There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
* a fixed-size 1D array of 4 complex floats.
*
* \sa class Array
*/
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_ARRAY_TYPEDEFS \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
特殊一点的地方在于,Array有一维数组,还有多维数组。一维数组的便利简单名称采样形如: ArrayNt
,这里N
为该维度中数组大小,t
为系数数据类型。二维数组形如:ArrayNNt
。
示例
type | typedef |
---|---|
Array<float,Dynamic,1> | ArrayXf |
Array<float,3,1> | Array3f |
Array<double,Dynamic,Dynamic> | ArrayXXd |
Array<double,3,3> | Array33d |
对数组系数的访问及操作
如Matrix中,重载的括号运算符()
用来访问数组中的系数, 可以用来取值,也可以用于赋值。如代码中所看到的,还可以使用operator<<
来初始化一个数组。
// array_1.cpp
#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
using namespace std;
int main()
{
ArrayXXf m(2,2);
// assign some values coefficient by coefficient
m(0,0) = 1.0; m(0,1) = 1.1;
m(1,0) = 2.0; m(1,1) = m(0,1) + m(1,0);
// print values to standard output
cout << m << endl << endl;
// using the comma-initializer is also allowed
m << 2.0,3.0,
8.0,9.0;
// print values to standard output
cout << m << endl;
}
执行结果:
$ g++ -I /usr/local/include/eigen3 array_1.cpp -o array_1
$ ./array_1
1 1.1
2 3.1
2 3
8 9
加法及减法运算
Array重载了operator+, operator-
,可以对2个Array进行加法或减法运算,当然这2个array得有相同的Size,可很容易理解。
还重载实现了一种计算:array + scalar
。这会将标量加到每个数组元素上去。
示例程序:
// array_2.cpp
#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
using namespace std;
int main()
{
ArrayXXf a(3,3);
ArrayXXf b(3,3);
a << 1,2,3,
4,5,6,
7,8,9;
b << 1,2,3,
1,2,3,
1,2,3;
cout<<"array a:" << endl << a <<endl;
cout<<"array b:" << endl << b <<endl;
// array +/- array
cout << "a + b = " << endl << a + b << endl << endl;
// array - scalar
cout << "a - 1 = " << endl << a - 1 << endl;
}
执行效果:
$ g++ -I /usr/local/include/eigen3 array_2.cpp -o array_2
$
$ ./array_2
array a:
1 2 3
4 5 6
7 8 9
array b:
1 2 3
1 2 3
1 2 3
a + b =
2 4 6
5 7 9
8 10 12
a - 1 =
0 1 2
3 4 5
6 7 8
乘法运算
乘法分为两种: array * scalar、 array * array
。其中 array * scalar
与matrix一样;array * array
是面向数组系数的操作,对应匹配的系数进行相乘,只有2个具有相同维度的数组才能相乘。
//array_multi.cpp
#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
using namespace std;
int main()
{
ArrayXXf a(2,2);
ArrayXXf b(2,2);
a << 1,2,
3,4;
b << 5,6,
7,8;
cout<<"array a:" << endl << a <<endl;
cout<<"array b:" << endl << b <<endl;
cout << "a * b = " << endl << a * b << endl;
cout<< "a * 2 = " << endl << a * 2 << endl;
}
执行:
$ g++ -I /usr/local/include/eigen3 array_multi.cpp -o array_multi
$
$ ./array_multi
array a:
1 2
3 4
array b:
5 6
7 8
a * b =
5 12
21 32
a * 2 =
2 4
6 8
其他的面向系数的计算
针对array,除了上面提到的 +, -, *
的计算,这些都是面向数组系数的,还有其他的一些函数操作。比如abs(), sqrt(), min(.)
。
//array_others.cpp
#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
using namespace std;
int main()
{
ArrayXf a = ArrayXf::Random(5);
a *= 2;
cout << "a =" << endl
<< a << endl;
cout << "a.abs() =" << endl
<< a.abs() << endl;
cout << "a.abs().sqrt() =" << endl
<< a.abs().sqrt() << endl;
cout << "a.min(a.abs().sqrt()) =" << endl
<< a.min(a.abs().sqrt()) << endl;
}
执行:
$ g++ -I /usr/local/include/eigen3 array_others.cpp -o array_other
$
$ ./array_other
a =
-1.99997
-1.47385
1.02242
-0.165399
0.131069
a.abs() =
1.99997
1.47385
1.02242
0.165399
0.131069
a.abs().sqrt() =
1.4142
1.21402
1.01115
0.406693
0.362034
a.min(a.abs().sqrt()) =
-1.99997
-1.47385
1.01115
-0.165399
0.131069
在Array与Matrix直接转换
在Eigen内,Matrix用于线性代理计算;而Array用于针对系数进行操作,它们有不同的目的。
Matrix类表达式expression 提供了.array()
函数方法,用于将矩阵matrix转换成array expression
,然后就可以很容易对系数进行各种操作。对应地,Array也提供了.matrix()
,用于从Array得到一个matrix expression表达式
。.array(),.matrix()
既可以用于右值、也可以用于左值。但在一个表达式内,混合.array(),.matrix()
是不可以的。比如,你不能直接让一个矩阵matrix和数组array相加。但可以通过.array(),.matrix()
进行一下转换,再进行计算。
因为经常有这样的计算需求,Eigen中Matrix提供了一个便利函数cwiseProduct(Matrix),用于处理Matrix.array() * Matrix.array()
计算。
示例:
//array_matrix_1.cpp
#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
using namespace std;
int main()
{
MatrixXf m(2,2);
MatrixXf n(2,2);
MatrixXf result(2,2);
m << 1,2,
3,4;
n << 5,6,
7,8;
cout<<"array m:" << endl << m <<endl;
cout<<"array n:" << endl << n <<endl<<"-----------------"<< endl;
result = m * n;
cout << "-- Matrix m*n: --" << endl << result << endl << endl;
result = m.array() * n.array();
cout << "-- Array m*n: --" << endl << result << endl << endl;
result = m.cwiseProduct(n);
cout << "-- With cwiseProduct: --" << endl << result << endl << endl;
result = m.array() + 4;
cout << "-- Array m + 4: --" << endl << result << endl << endl;
}
执行一下,检查结果:
$ g++ -I /usr/local/include/eigen3 array_matrix_1.cpp -o array_matrix_1
$
$ ./array_matrix_1
array m:
1 2
3 4
array n:
5 6
7 8
-----------------
-- Matrix m*n: --
19 22
43 50
-- Array m*n: --
5 12
21 32
-- With cwiseProduct: --
5 12
21 32
-- Array m + 4: --
5 6
7 8
来源:CSDN
作者:whereismatrix
链接:https://blog.csdn.net/whereismatrix/article/details/104400205