因为二叉树是单向的,所以要判断当前节点的子节点(左或右)是否是被删除的节点
//递归删除节点
//规定:如果是叶子节点就删除节点,如果非叶子节点就删除子树
public void delNode(int no){
if (this.left !=null && this.left.no == no){
this.left = null;
return;
}
if (this.right != null && this.right.no == no){
this.right = null;
return;
}
if (this.left != null){
this.left.delNode(no);
}
if (this.right != null){
this.right.delNode(no);
}
}
//删除节点
public void delNode(int no){
if (root != null){//判断root是不是要删除的节点
if (root.getNo() == no){
root = null;
}else {
root.delNode(no);
}
}
}
完整代码
package tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的节点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
//说明,先手动创建该二叉树,后面学习递归方式创建二叉树
binaryTree.setRoot(root);
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
//测试
// System.out.println("前序遍历");
// binaryTree.preOrder();
// System.out.println("中序遍历");
// binaryTree.infixOrder();
// System.out.println("后序遍历");
// binaryTree.postOrder();
//测试查找
//前序遍历查找
// System.out.println("前序遍历查找:~~~~");
// HeroNode heroNode1 = binaryTree.preOrederSearch(5);
// if (heroNode1 != null){
// System.out.println("找到节点:" + heroNode1.toString());
// }else {
// System.out.println("没有找到");
// }
//
//// //中序遍历查找
// System.out.println("中序遍历查找:~~~~");
// HeroNode heroNode2 = binaryTree.infixOrderSeach(5);
// if (heroNode2 != null){
// System.out.println("找到节点:" + heroNode2.toString());
// }else {
// System.out.println("没有找到");
// }
//
// //后序遍历查找
// System.out.println("后序遍历查找:~~~~");
// HeroNode heroNode3 = binaryTree.postOrderSeach(5);
// if (heroNode3 != null){
// System.out.println("找到节点:" + heroNode3.toString());
// }else {
// System.out.println("没有找到");
// }
//删除前
System.out.println("删除前,前序遍历");
binaryTree.preOrder();
binaryTree.delNode(3);
System.out.println("删除后,前序遍历");
binaryTree.preOrder();
}
}
class BinaryTree{
private HeroNode root;
public void setRoot(HeroNode root){
this.root = root;
}
//前序遍历
public void preOrder(){
if (this.root != null){
this.root.preOrder();
}else {
System.out.println("二叉树为空无法遍历");
}
}
//中序遍历
public void infixOrder(){
if (this.root != null){
this.root.infixOrder();
}else {
System.out.println("二叉树为空无法遍历");
}
}
//后序遍历
public void postOrder(){
if (this.root != null){
this.root.postOrder();
}else {
System.out.println("二叉树为空无法遍历");
}
}
//前序查找
public HeroNode preOrederSearch(int no){
if (root != null){
return root.preOrderSearch(no);
}else {
return null;
}
}
//中序查找
public HeroNode infixOrderSeach(int no){
if (root != null){
return root.infixOrderSearch(no);
}else {
return null;
}
}
//后序查找
public HeroNode postOrderSeach(int no){
if (root != null){
return root.postOrderSearch(no);
}else {
return null;
}
}
//删除节点
public void delNode(int no){
if (root != null){//判断root是不是要删除的节点
if (root.getNo() == no){
root = null;
}else {
root.delNode(no);
}
}
}
}
class HeroNode{
private int no;
private String name;
private HeroNode left;//默认null
private HeroNode right;//默认null;
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//编写前序遍历方法
public void preOrder(){
System.out.println(this);//先输出父节点
//递归向左子树前序遍历
if (this.left != null){
this.left.preOrder();
}
//递归向右子树前序遍历
if (this.right != null){
this.right.preOrder();
}
}
//编写中序遍历方法
public void infixOrder(){
//递归向左子树前序遍历
if (this.left != null){
this.left.infixOrder();
}
System.out.println(this);//输出父节点
//递归向右子树前序遍历
if (this.right != null){
this.right.infixOrder();
}
}
//编写后序遍历方法
public void postOrder(){
if (this.left != null){
this.left.postOrder();
}
if (this.right != null){
this.right.postOrder();
}
System.out.println(this);
}
public static int i = 1, j = 1, k =1;
//编写前序查找方法
public HeroNode preOrderSearch(int no){
System.out.println("前序遍历"+(i++)+"次");
if (this.no == no){
return this;
}
HeroNode heroNode = null;
if (this.left != null){
heroNode = this.left.preOrderSearch(no);
}
//不等于空说明在左边找到了
if (heroNode != null){
return heroNode;
}
if (this.right != null){
heroNode = this.right.preOrderSearch(no);
}
return heroNode;
}
//中序遍历查找
public HeroNode infixOrderSearch(int no){
HeroNode heroNode = null;
//先判断当前节点的左子节点是否为空,不为空继续进行中序查找
if (this.left != null){
heroNode = this.left.infixOrderSearch(no);
}
if (heroNode != null){
return heroNode;
}
System.out.println("中序遍历"+(j++)+"次");
if (this.no == no){
return this;
}
if (this.right != null){
heroNode = this.right.infixOrderSearch(no);
}
return heroNode;
}
//后序遍历查找
public HeroNode postOrderSearch(int no){
HeroNode heroNode = null;
//判断当前节点的左子节点是否为空,不为空,则递归后序遍历查找
if (this.left != null){
heroNode = this.left.postOrderSearch(no);
}
if (heroNode != null){
return heroNode;
}
//判断当前节点的右子节点是否为空,不为空,则递归后序遍历查找
if (this.right != null){
heroNode = this.right.postOrderSearch(no);
}
if (heroNode != null){
return heroNode;
}
System.out.println("后序遍历"+(k++)+"次");
//左右子树都没有找到,比较当前节点是不是
if (this.no == no){
return this;
}
return heroNode;
}
//递归删除节点
//规定:如果是叶子节点就删除节点,如果非叶子节点就删除子树
public void delNode(int no){
if (this.left !=null && this.left.no == no){
this.left = null;
return;
}
if (this.right != null && this.right.no == no){
this.right = null;
return;
}
if (this.left != null){
this.left.delNode(no);
}
if (this.right != null){
this.right.delNode(no);
}
}
}
来源:CSDN
作者:春_
链接:https://blog.csdn.net/weixin_43736084/article/details/104144986