SpringCloud与Dubbo对比

天涯浪子 提交于 2020-01-26 14:43:48


SpringCloud和Dubbo都是当下流行的RPC框架,各自都集成了服务发现和治理组件。SpringCloud用Eureka做注册中心,Dubbo用Zookeeper注册中心。

注册服务
Dubbo是基于java接口及Hession2序列化的来实现传输的,Provider对外暴露接口,Consumer根据接口的规则调用。也就是Provider向Zookeeper注册的是接口信息,Consumer从Zookeeper发现的是接口的信息,通过接口的name,group,version来匹配调用。Consumer只关注接口是否匹配,而对此接口属于什么应用不关心。当然接口的注册信息里会包含应用的ip,hostname等。

SpringCloud的服务发现是基于Http协议来实现的,Provider对外暴露的是应用信息,比如应用名称,ip地址等等,Consumer发现的是应用的信息,当调用的时候随机选择一个Provider的IP地址,应用名称,然后依据Http协议发送请求。Consumer关注的是应用名称,根据应用名称来决定调用的是哪个服务集群,然后对此名称对应的服务集群做负载均衡。Provider接受到请求后,根据内置的SpringMVC来匹配路由处理请求。
SpringCloud是一套目前比较网站微服务框架了,整合了分布式常用解决方案遇到了问题注册中心Eureka、负载均衡器Ribbon ,客户端调用工具Rest和Feign,分布式配置中心Config,服务保护Hystrix,网关Zuul Gateway,服务链路Zipkin,消息总线Bus等。 


从架构上分析
Dubbo内部实现功能没有SpringCloud强大,只是实现服务治理,缺少分布式配置中心、网关、链路、总线等,如果需要用到这些组件,需要整合其他框架。

 从更新迭代速度分析
Dubbo目前更新速度没有SpringCloud快,到SpringCloud2.0后SpringCloud会越来完善和稳定。

 从开发背景角度分析
 Dubbo的开发背景是阿里巴巴, 在中国也推出了非常多的优秀的开源框架
 但是在SpringCloud的背景是Spring家族,Spring是专注于企业级开源框架开发,在中国,或者在整个世界上Spring框架都应用的非常广泛。所有相对来说SpringCloud的背景比Dubbo更加强大。

最后总结下:如果学习Dubbo的话,学习其他的分布式解决方案需要自己组装,反而如果学习SpringCloud,它已经把整个常用分布式解决都整合好了。


Server集群服务信息同步的区别

Dubbo使用Zookeeper做服务发现和治理,Zookeeper是一个分布式协调框架,其有很多很实用的功能,服务发现仅仅是其中的一个。Zookeeper基于著名的CAP理论中的C(一致性),P(分区可用性)实现,它的ZAB(zookeeper atomic broadcast protocol)协议,保证了集群里状态的一致性。Client的每一个事务操作都由Leader广播给所有Follower,当超过半数的Follower都返回执行成功后,才执行事务的ack。对于因网络崩溃或者宕机等问题而执行失败的zookeeper节点,zookeeper会基于zab的崩溃恢复机制来处理,这里不再讲述。每一个操作都需要过半数的zookeeper节点执行成功才确认成功,那么当zookeeper集群过半数节点出现问题时,服务发现功能就不可用。

SpringCloud使用Eureka做服务发现和治理,它是一个专门用于服务发现和治理的框架,其基于CAP理论中的A(可用性),P(分区可用性)实现。EurekaServer节点间的服务信息同步是基于异步Http实现的。每隔Server节点在接收Client的服务请求时,立即处理请求,然后将此次请求的信息拷贝,封装成一个Task,存入Queue中。Server初始化时会启动一个线程定期的从TaskQueue中批量提取Task,然后执行。服务同步不保证一定成功,虽然有失败重试,但超过一定时限后就放弃同步。当然其有一个特性,当服务丢失后,同步的操作返回400,404后会立即将最新的服务信息同步过去,因此即使中途同步失败,不会对后续的同步有影响。

服务更新机制的区别

Dubbo使用Zookeeper做服务发现和治理,订阅Zookeeper下相应的znode。当节点发生变化,比如有新的元素增加,或者旧的元素移除,Zookeeper会通知所有订阅此节点的Client,将当前的全量数据同步给各Client,Dubbo里根据最新的数据来做相应处理,移除下线的,初始化新增的。每次更新都同步全量数据。

Eureka在启动时向Server进行一次全量拉取,获取所有的可用服务信息,之后默认情况下都是进行增量拉取。Server会将有变化的服务信息放在一个Queue里,Client每次同步时仅获取增量信息,根据信息里的操作类型,服务信息来对当前持有的服务做相应的处理,移除下线的,初始化新增的等。每次更新仅同步增量数据,也就是更新的数据。

服务更新反馈机制的区别

Dubbo订阅Zookeeper下相应的节点,当节点的状态发生改变时,Zookeeper会立即反馈订阅的Client,实时性很高。

Eureka Server在接收到Client的更新操作,或者移除服务信息时,仅仅会将更新消息存放入recentlyChangedQueue中,不会主动的反馈其他Client。其他Client只有在拉取服务增量信息时才会感知到某个服务的更新,延时最大为30S,也就是拉取周期。

 服务信息回收机制的区别

Dubbo Provider初始化时会创建一个Zookeeper Client,专门用于与Zookeeper集群交互。维持与集群间的长连接,定时发送心跳,维护Zookeeper上自身节点的存在。节点类型是临时节点,也就是当心跳超时或者长连接断开时,会立即移除Provider对应的节点。
Dubbo Consumer初始化时也会创建一个Zookeeper Client,专门用于与Zookeeper集群交互。维持长连接,创建EvenetListener,监听Provider节点的变动情况。当Provider节点新增或者移除时,Zookeeper会广播这个事件,然后将此节点的当前值(剩下的所有接口信息)发送给那些注册了此节点监听器的Client。Consumer获取到对应Provider节点下的所有接口信息后,移除已下线的,创建新增的。
Zookeeper对服务信息的维护实时性和一致性比较高,但也可能因为网络问题或者集群问题导致服务不可用。

SpringCloud的服务信息回收仅基于心跳超时,与长连接无关。当心跳超时后,EurekaServer回收服务信息,然后将此动作同步给其他Server节点。当然可能一个服务信息会存在多个Server上,多次回收操作的同步具备幂等性。也就是说服务回收只需要通知一个Server节点就可以了,回收动作会通过Server节点传播开来。EurekaServer能够回收服务信息由个重要前提:上一分钟内正常发送心跳的服务的比列超过总数的85%,如果因为网络波动等原因造成大量服务的心跳超时,那么EurekaServer会触发自我保护机制,放弃回收那些心跳超时的服务信息。服务发现组件应该优先保证可用性,Consumer能够发现Provider,即使发现的是非可用的Provider,但因为Conusmer一般具备容错机制,不会对服务的正常调用有太多影响。从这点上看Eureka的服务发现机制要比Zookeeper稍微合理一点的。

节点性质的区别

Dubbo只有Consumer订阅Provider节点,也就是Consumer发现Provider节点信息

Eureka不区分Consumer或者Provider,两者都统称为Client,一个Client内可能同时含有Provider,Consumer,通过服务发现组件获取的是其他所有的Client节点信息,在调用时根据应用名称来筛选节点

使用方式的区别

Dubbo使用Zookeeper作为服务发现和治理的组件,所以需要搭建Zookeeper集群作为依赖。

SpringCloud使用Eureka作为服务发现和治理组件,在Spring应用中整合Eureka还是很简单的,引入依赖,加个注解,指定集群Server的serviceUrl,其他的都可以使用默认配置即可,启动应用,Eureka集群就搭建好了。同时配合SpringCloudConfg,能够统一管理Eureka的集群配置信息,可以动态的增加或减少EurekaServer的集群节点。Eurerka会每隔15分钟根据配置上的集群信息重新生成集群节点,覆盖之前的。这种机制比Zookeeper要更优秀一些,毕竟Eureka算是Spring生态里的一环,已经被整合的非常好了,能够以很多匪夷所思的方式来使用。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!