leetcdoe课程表

▼魔方 西西 提交于 2020-01-26 13:09:46

题目

现在你总共有 n 门课需要选,记为 0n-1

在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]

给定课程总量以及它们的先决条件,判断是否可能完成所有课程的学习?

示例 1:

输入: 2, [[1,0]] 
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。

示例 2:

输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成​课程 0;
并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。

说明:
输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
你可以假定输入的先决条件中没有重复的边。
提示:
这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
拓扑排序也可以通过 BFS 完成。

代码(java)

方法一:入度表(广度优先遍历)

有向图

class Solution {

    public boolean canFinish(int numCourses, int prerequisites) {
        int[] indegrees = new int[numCourses];
        for(int[] cp : prerequisites) indegrees[cp[0]]++;//入度增加
        LinkedList<Integer> queue = new LinkedList<>();
        for(int i = 0; i < numCourses; i++){
            if(indegrees[i] == 0) queue.addLast(i);
        }

        while(!queue.isEmpty()) {
            Integer pre = queue.removeFirst();
            numCourses--;
            for(int[] req : prerequisites) {//循环二维数组
                if(req[1] != pre) continue;//判断是不是依赖这一门课,如果不是,就跳过
                //如果是这门课,入席数组减减
                if(--indegrees[req[0]] == 0) queue.add(req[0]);
            }
        }
        return numCourses == 0;
    }
}

方法二:深度优先遍历

第 1 步:构建逆邻接表;

第 2 步:递归处理每一个还没有被访问的结点,具体做法很简单:对于一个结点来说,先输出指向它的所有顶点,再输出自己。

第 3 步:如果这个顶点还没有被遍历过,就递归遍历它,把所有指向它的结点都输出了,再输出自己。注意:当访问一个结点的时候,应当先递归访问它的前驱结点,直至前驱结点没有前驱结点为止。

import java.util.HashSet;

public class Solution6 {

    public boolean canFinish(int numCourses, int[][] prerequisites) {
        if (numCourses <= 0) {
            return false;
        }
        int plen = prerequisites.length;
        if (plen == 0) {
            return true;
        }
        int[] marked = new int[numCourses];

        // 初始化有向图 begin
        HashSet<Integer>[] graph = new HashSet[numCourses];
        for (int i = 0; i < numCourses; i++) {
            graph[i] = new HashSet<>();
        }
        // 初始化有向图 end
        // 有向图的 key 是前驱结点,value 是后继结点的集合
        for (int[] p : prerequisites) {
            graph[p[1]].add(p[0]);
        }

        for (int i = 0; i < numCourses; i++) {
            if (dfs(i, graph, marked)) {
                // 注意方法的语义,如果图中存在环,表示课程任务不能完成,应该返回 false
                return false;
            }
        }
        // 在遍历的过程中,一直 dfs 都没有遇到已经重复访问的结点,就表示有向图中没有环
        // 所有课程任务可以完成,应该返回 true
        return true;
    }

    /**
     * 注意这个 dfs 方法的语义
     * @param i      当前访问的课程结点
     * @param graph
     * @param marked 如果 == 1 表示正在访问中,如果 == 2 表示已经访问完了
     * @return true 表示图中存在环,false 表示访问过了,不用再访问了
     */
    private boolean dfs(int i,
                        HashSet<Integer>[] graph,
                        int[] marked) {
        // 如果访问过了,就不用再访问了
        if (marked[i] == 1) {
            // 从正在访问中,到正在访问中,表示遇到了环
            return true;
        }

        if (marked[i] == 2) {
            // 表示在访问的过程中没有遇到环,这个节点访问过了
            return false;
        }
        // 走到这里,是因为初始化呢,此时 marked[i] == 0
        // 表示正在访问中
        marked[i] = 1;
        // 后继结点的集合
        HashSet<Integer> successorNodes = graph[i];

        for (Integer successor : successorNodes) {
            if (dfs(successor, graph, marked)) {
                // 层层递归返回 true ,表示图中存在环
                return true;
            }
        }
        // i 的所有后继结点都访问完了,都没有存在环,则这个结点就可以被标记为已经访问结束
        // 状态设置为 2
        marked[i] = 2;
        // false 表示图中不存在环
        return false;
    }
}

有向图

有向图

前驱与直接前驱结点的区别

对于某个有向图,它拥有A->B->C 前驱:对于C来说,其前驱为A、B 直接前驱:对于C来说,其直接前驱为B。

代码(cpp)

方法一:广度优先(cpp)

#include <stdio.h>

#include <vector>
#include <queue>

struct GraphNode{
	int label;
	std::vector<GraphNode *> neighbors;
	GraphNode(int x) : label(x) {};
};

class Solution {
public:
    bool canFinish(int numCourses,
		std::vector<std::pair<int, int> >& prerequisites) {
		std::vector<GraphNode*> graph;
		std::vector<int> degree;
		for (int i = 0; i < numCourses; i++){
			degree.push_back(0);
			graph.push_back(new GraphNode(i));
		}
		for (int i = 0; i < prerequisites.size(); i++){
			GraphNode *begin = graph[prerequisites[i].second];
			GraphNode *end = graph[prerequisites[i].first];
			begin->neighbors.push_back(end);
			degree[prerequisites[i].first]++;
		}		
		std::queue<GraphNode *> Q;
		for (int i = 0; i < numCourses; i++){
			if (degree[i] == 0){
				Q.push(graph[i]);
			}
		}
		while(!Q.empty()){
			GraphNode *node = Q.front();
			Q.pop();
			for (int i = 0; i < node->neighbors.size(); i++){
				degree[node->neighbors[i]->label]--;
				if (degree[node->neighbors[i]->label] == 0){
					Q.push(node->neighbors[i]);
				}
			}
		}		
		for (int i = 0; i < graph.size(); i++){
			delete graph[i];
		}		
		for (int i = 0; i < degree.size(); i++){
			if (degree[i]){
				return false;
			}
		}
		return true;
    }
};

int main(){	
	std::vector<std::pair<int, int> > prerequisites;
	prerequisites.push_back(std::make_pair(1, 0));
	prerequisites.push_back(std::make_pair(2, 0));
	prerequisites.push_back(std::make_pair(3, 1));
	prerequisites.push_back(std::make_pair(3, 2));
	Solution solve;
	printf("%d\n", solve.canFinish(4, prerequisites));	
	return 0;
}

方法二:深度优先(cpp)

#include <stdio.h>

#include <vector>
struct GraphNode{
	int label;
	std::vector<GraphNode *> neighbors;
	GraphNode(int x) : label(x) {};
};
//节点状态,-1没有访问过,0代表正在访问,1代表已完成访问
bool DFS_graph(GraphNode *node, std::vector<int> &visit){
	visit[node->label] = 0;
	for (int i = 0; i < node->neighbors.size(); i++){
		if (visit[node->neighbors[i]->label] == -1){
			if (DFS_graph(node->neighbors[i], visit) == 0){
				return false;
			}
		}
		else if (visit[node->neighbors[i]->label] == 0){
			return false;
		}
	}
	visit[node->label] = 1;
	return true;
}

class Solution {
public:
    bool canFinish(int numCourses,
		std::vector<std::pair<int, int> >& prerequisites) {
		std::vector<GraphNode*> graph;
		std::vector<int> visit;
		for (int i = 0; i < numCourses; i++){
			graph.push_back(new GraphNode(i));
			visit.push_back(-1);
		}
		//创建图,连接图的顶点
		for (int i = 0; i < prerequisites.size(); i++){
			GraphNode *begin = graph[prerequisites[i].second];
			GraphNode *end = graph[prerequisites[i].first];
			begin->neighbors.push_back(end);
		}
		for (int i = 0; i < graph.size(); i++){
			//如果节点没有访问过,进行DFS,如果DFS遇到环,返回无法完成课程。
			if (visit[i] == -1 && !DFS_graph(graph[i], visit)){
				return false;
			}
		}
		for (int i = 0; i < numCourses; i++){
			delete graph[i];
		}
		return true;//返回可以完成
    }
};

int main(){	
	std::vector<std::pair<int, int> > prerequisites;
	prerequisites.push_back(std::make_pair(1, 0));
	prerequisites.push_back(std::make_pair(2, 0));
	prerequisites.push_back(std::make_pair(3, 1));
	prerequisites.push_back(std::make_pair(3, 2));
	Solution solve;
	printf("%d\n", solve.canFinish(4, prerequisites));
	return 0;
}

参考资料

课程表

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!