简单的数学运算:
极限运算:
limit(f,x,x0): 计算x→x0时函数f的极限。
举例:
syms x
y1=(1+x+2*sin(x))^(2/x);
y2=((1+x)^0.5-2)/(x^2-2*x-3);
y3=x^2*sin(1/x)/sqrt(2*x^2-1);
f1=limit(y1,0)
f2=limit(y2,3)
f3=limit(y3,inf)
导数计算:
计算 的各阶导数
diff(f,x,k): 计算函数f对x的k阶导数。
subs(f,x,x0): 计算函数f在x=x0点的函数值。
syms x
y=x*atan(x);
f1=diff(y,1)
f2=diff(y,2)
yy=subs(f2,x,1)
syms x y
z=x^y*log(2*x+3*y);
fx=diff(z,x,1)
fy=diff(z,y,1)
fxy=diff(fx,y,1)
fxy11=subs(fxy,[x,y],[1,1])
积分计算:
求符号积分函数:int
格式:int(f,x,a,b) 功能:计算定积分
格式:int(f,x) 功能:计算不定积分
syms x
y1=1/(1+x^3);
y2=(x*exp(x))/(1+x)^2;
y3=1/(x^2+2*x+3);
fy1=int(y1)
fy2=int(y2,0,1)
fy3=int(y3,-inf,+inf)
syms x y;
f=2*x+3*y;
yup=x;
ylow=x^2;
fs=int(f,y,ylow,yup)
fss=int(fs,0,1)
线性代数中的运算:
建立矩阵的方法: 如 A= [2,4,1;0,-2,4;2,4,6]
1.矩阵的基本运算
- 数k与矩阵A的运算:k+A k*A
- 加法运算:A+B, A-B ,(A与B为同阶矩阵)
- 乘法运算:A*B(A为m×k矩阵,B为k×n矩阵)
- 右除运算:A/B (A乘B的逆,B为可逆矩阵)
- 左除运算:A\B ( A的逆乘B ,A为可逆矩阵)
- 幂运算:若A为方阵, A^n为矩阵A的n次幂
2. 基本矩阵函数
转置A,行列式 det(A), 逆inv(A), 秩rank(A), 特征值eig(A), 迹trace(A),条件数cond(A),rref(A)将A化成行最简形,齐次线性方程组Ax=0 的基础解系:null(A,r)
A=[3,-7,-3;2,-5,2;-4,6,3]
dA=det(A)
dAa=dA^2
At=inv(A)
format rat
a=[1,-2,-1,0,2;-2,4,2,6,-6;2,-1,0,2,3;3,3,3,3,4];
b=rref(a)
a=[1,2,2,1;2,1,-2,-2;1,-1,-4,-3]
r=rank(a)
format rat
b=null(a,'r')
format
A=[0,-1,1;-1,0,1;1,1,0];
[u, t]=eig(A)
函数简易作图:
ezplot(y):二维(平面)曲线图
ezplot3(x,y,z):三维(空间)曲线图
ezmesh(z):空间曲面图
syms x
y=x*sin(x)
ezplot(y)
syms x y
z=2*x^2+y^2
ezmesh(z)
syms t
ezplot3(2*cos(t), 2*sin(t),3*t)
来源:CSDN
作者:mmk27
链接:https://blog.csdn.net/mmk27_word/article/details/104064341