Convert string to dict, then access key:values??? How to access data in a <class 'dict'> for Python?

让人想犯罪 __ 提交于 2020-01-14 07:29:08

问题


I am having issues accessing data inside a dictionary.

Sys: Macbook 2012
Python: Python 3.5.1 :: Continuum Analytics, Inc.

I am working with a dask.dataframe created from a csv.

Edit Question

How I got to this point

Assume I start out with a Pandas Series:

df.Coordinates
130      {u'type': u'Point', u'coordinates': [-43.30175...
278      {u'type': u'Point', u'coordinates': [-51.17913...
425      {u'type': u'Point', u'coordinates': [-43.17986...
440      {u'type': u'Point', u'coordinates': [-51.16376...
877      {u'type': u'Point', u'coordinates': [-43.17986...
1313     {u'type': u'Point', u'coordinates': [-49.72688...
1734     {u'type': u'Point', u'coordinates': [-43.57405...
1817     {u'type': u'Point', u'coordinates': [-43.77649...
1835     {u'type': u'Point', u'coordinates': [-43.17132...
2739     {u'type': u'Point', u'coordinates': [-43.19583...
2915     {u'type': u'Point', u'coordinates': [-43.17986...
3035     {u'type': u'Point', u'coordinates': [-51.01583...
3097     {u'type': u'Point', u'coordinates': [-43.17891...
3974     {u'type': u'Point', u'coordinates': [-8.633880...
3983     {u'type': u'Point', u'coordinates': [-46.64960...
4424     {u'type': u'Point', u'coordinates': [-43.17986...

The problem is, this is not a true dataframe of dictionaries. Instead, it's a column full of strings that LOOK like dictionaries. Running this show it:

df.Coordinates.apply(type)
130      <class 'str'>
278      <class 'str'>
425      <class 'str'>
440      <class 'str'>
877      <class 'str'>
1313     <class 'str'>
1734     <class 'str'>
1817     <class 'str'>
1835     <class 'str'>
2739     <class 'str'>
2915     <class 'str'>
3035     <class 'str'>
3097     <class 'str'>
3974     <class 'str'>
3983     <class 'str'>
4424     <class 'str'>

My Goal: Access the coordinates key and value in the dictionary. That's it. But it's a str

I converted the strings to dictionaries using eval.

new = df.Coordinates.apply(eval)
130      {'coordinates': [-43.301755, -22.990065], 'typ...
278      {'coordinates': [-51.17913026, -30.01201896], ...
425      {'coordinates': [-43.17986794, -22.91000096], ...
440      {'coordinates': [-51.16376782, -29.95488677], ...
877      {'coordinates': [-43.17986794, -22.91000096], ...
1313     {'coordinates': [-49.72688407, -29.33757253], ...
1734     {'coordinates': [-43.574057, -22.928059], 'typ...
1817     {'coordinates': [-43.77649254, -22.86940539], ...
1835     {'coordinates': [-43.17132318, -22.90895217], ...
2739     {'coordinates': [-43.1958313, -22.98755333], '...
2915     {'coordinates': [-43.17986794, -22.91000096], ...
3035     {'coordinates': [-51.01583481, -29.63593292], ...
3097     {'coordinates': [-43.17891379, -22.96476163], ...
3974     {'coordinates': [-8.63388008, 41.14594453], 't...
3983     {'coordinates': [-46.64960938, -23.55902666], ...
4424     {'coordinates': [-43.17986794, -22.91000096], ...

Next I text the type of object and get:

130      <class 'dict'>
278      <class 'dict'>
425      <class 'dict'>
440      <class 'dict'>
877      <class 'dict'>
1313     <class 'dict'>
1734     <class 'dict'>
1817     <class 'dict'>
1835     <class 'dict'>
2739     <class 'dict'>
2915     <class 'dict'>
3035     <class 'dict'>
3097     <class 'dict'>
3974     <class 'dict'>
3983     <class 'dict'>
4424     <class 'dict'>

If I try to access my dictionaries: new.apply(lambda x: x['coordinates']

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-71-c0ad459ed1cc> in <module>()
----> 1 dfCombined.Coordinates.apply(coord_getter)

/Users/linwood/anaconda/envs/dataAnalysisWithPython/lib/python3.5/site-packages/pandas/core/series.py in apply(self, func, convert_dtype, args, **kwds)
   2218         else:
   2219             values = self.asobject
-> 2220             mapped = lib.map_infer(values, f, convert=convert_dtype)
   2221 
   2222         if len(mapped) and isinstance(mapped[0], Series):

pandas/src/inference.pyx in pandas.lib.map_infer (pandas/lib.c:62658)()

<ipython-input-68-748ce2d8529e> in coord_getter(row)
      1 import ast
      2 def coord_getter(row):
----> 3     return (ast.literal_eval(row))['coordinates']

TypeError: 'bool' object is not subscriptable

It's some type of class, because when I run dir I get this for one object:

new.apply(lambda x: dir(x))[130]
130           __class__
130        __contains__
130         __delattr__
130         __delitem__
130             __dir__
130             __doc__
130              __eq__
130          __format__
130              __ge__
130    __getattribute__
130         __getitem__
130              __gt__
130            __hash__
130            __init__
130            __iter__
130              __le__
130             __len__
130              __lt__
130              __ne__
130             __new__
130          __reduce__
130       __reduce_ex__
130            __repr__
130         __setattr__
130         __setitem__
130          __sizeof__
130             __str__
130    __subclasshook__
130               clear
130                copy
130            fromkeys
130                 get
130               items
130                keys
130                 pop
130             popitem
130          setdefault
130              update
130              values
Name: Coordinates, dtype: object

My Problem: I just want to access the dictionary. But, the object is <class 'dict'>. How do I covert this to a regular dict or just access the key:value pairs?

Any ideas??


回答1:


My first instinct is to use the json.loads to cast the strings into dicts. But the example you've posted does not follow the json standard since it uses single instead of double quotes. So you have to convert the strings first.

A second option is to just use regex to parse the strings. If the dict strings in your actual DataFrame do not exactly match my examples, I expect the regex method to be more robust since lat/long coords are fairly standard.

import re
import pandasd as pd

df = pd.DataFrame(data={'Coordinates':["{u'type': u'Point', u'coordinates': [-43.30175, 123.45]}",
    "{u'type': u'Point', u'coordinates': [-51.17913, 123.45]}"],
    'idx': [130, 278]})


##
# Solution 1- use json.loads
##

def string_to_dict(dict_string):
    # Convert to proper json format
    dict_string = dict_string.replace("'", '"').replace('u"', '"')
    return json.loads(dict_string)

df.CoordDicts = df.Coordinates.apply(string_to_dict)
df.CoordDicts[0]['coordinates']
#>>> [-43.30175, 123.45]


##
# Solution 2 - use regex
##
def get_lat_lon(dict_string):
    # Get the coordinates string with regex
    rs = re.search("(\-?\d+(\.\d+)?),\s*(\-?\d+(\.\d+)?)", dict_string).group()
    # Cast to floats
    coords = [float(x) for x in rs.split(',')]
    return coords

df.Coords = df.Coordinates.apply(get_lat_lon)
df.Coords[0]
#>>> [-43.30175, 123.45]



回答2:


It looks like you end up with something like this

s = pd.Series([
        dict(type='Point', coordinates=[1, 1]),
        dict(type='Point', coordinates=[1, 2]),
        dict(type='Point', coordinates=[1, 3]),
        dict(type='Point', coordinates=[1, 4]),
        dict(type='Point', coordinates=[1, 5]),
        dict(type='Point', coordinates=[2, 1]),
        dict(type='Point', coordinates=[2, 2]),
        dict(type='Point', coordinates=[2, 3]),        
    ])

s

0    {u'type': u'Point', u'coordinates': [1, 1]}
1    {u'type': u'Point', u'coordinates': [1, 2]}
2    {u'type': u'Point', u'coordinates': [1, 3]}
3    {u'type': u'Point', u'coordinates': [1, 4]}
4    {u'type': u'Point', u'coordinates': [1, 5]}
5    {u'type': u'Point', u'coordinates': [2, 1]}
6    {u'type': u'Point', u'coordinates': [2, 2]}
7    {u'type': u'Point', u'coordinates': [2, 3]}
dtype: object

Solution

df = s.apply(pd.Series)
df

then access coordinates

df.coordinates

0    [1, 1]
1    [1, 2]
2    [1, 3]
3    [1, 4]
4    [1, 5]
5    [2, 1]
6    [2, 2]
7    [2, 3]
Name: coordinates, dtype: object

Or even

df.coordinates.apply(pd.Series)




回答3:


Just ran into this problem. My solution:

import ast
import pandas as pd

df = pd.DataFrame(["{u'type': u'Point', u'coordinates': [-43,144]}","{u'type': u'Point', u'coordinates': [-34,34]}","{u'type': u'Point', u'coordinates': [-102,344]}"],columns=["Coordinates"])

df = df["Coordinates"].astype('str')
df = df.apply(lambda x: ast.literal_eval(x))
df = df.apply(pd.Series)



回答4:


Assuming you start with a Series of dicts, you can use the .tolist() method to create a list of dicts and use this as input for a DataFrame. This approach will map each distinct key to a column.

You can filter by keys on creation by setting the columns argument in pd.DataFrame(), giving you the neat one-liner below. Hope that helps.

# Starting assumption:
data = ["{'coordinates': [-43.301755, -22.990065], 'type': 'Point', 'elevation': 1000}",
        "{'coordinates': [-51.17913026, -30.01201896], 'type': 'Point'}"]
s = pd.Series(data).apply(eval)

# Create a DataFrame with a list of dicts with a selection of columns
pd.DataFrame(s.tolist(), columns=['coordinates'])
Out[1]: 
                    coordinates
0      [-43.301755, -22.990065]
1  [-51.17913026, -30.01201896]


来源:https://stackoverflow.com/questions/39169718/convert-string-to-dict-then-access-keyvalues-how-to-access-data-in-a-class

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!