问题
This is my dataframe (with many more letters and a length of ~35.5k) and stuff where the – are other relevant strings). All the variables are strings and ['C1','C2'] is the MultiIndex.
tmp
C1 C2 C3 C4 C5 Start End C8
A 1 - - - 12 14 -
A 2 - - - 1,4,7 3,6,10 -
A 3 - - - 16,19 17,21 -
A 4 - - - 22 24 -
I need it to become this (split every row that contains commas maintaining everything else):
C1 C2 C3 C4 C5 Start End C8 Appearance
A 1 - - - 12 14 - 1
A 2 - - - 1 3 - 1
A 2 - - - 4 6 - 2
A 2 - - - 7 10 - 3
A 3 - - - 16 17 - 1
A 3 - - - 19 21 - 2
A 4 - - - 22 24 - 1
I tried this script pandas: How do I split text in a column into multiple rows?
as
s = tmp['Start'].str.split(',').apply(Series, 1).stack()
s.index = s.index.droplevel(-1)
s.name = 'Start
del tmp['Start']
final = tmp.join(s)
But then the result is much larger than it should! I get thousands of repeats and this is just trying to split 'Start'. I can't even imagine trying to do so for both Start and End (every comma in 'Start' implies a comma in 'End'.
Lengths:
tmp = 35568
s = 35676
final = 293408
回答1:
You can create new df
from s1
and s2
and then join. Also better is use parameter expand=True
in str.split and delete multiple columns by drop:
For creating column Appearance
use groupby
by index
with cumcount.
s1 = tmp['Start'].str.split(',', expand=True).stack()
s1.index = s1.index.droplevel(-1)
s1.name = 'Start'
s2 = tmp['End'].str.split(',', expand=True).stack()
s2.index = s2.index.droplevel(-1)
s2.name = 'End'
tmp.drop(['Start', 'End'], inplace=True, axis=1)
df = pd.DataFrame({'s1':s1, 's2':s2}, index=s1.index)
final = tmp.join(df)
final['Appearance'] = final.groupby(final.index).cumcount() + 1
print (final)
C1 C2 C3 C4 C5 C8 s1 s2 Appearance
0 A 1 - - - - 12 14 1
1 A 2 - - - - 1 3 1
1 A 2 - - - - 4 6 2
1 A 2 - - - - 7 10 3
2 A 3 - - - - 16 17 1
2 A 3 - - - - 19 21 2
3 A 4 - - - - 22 24 1
EDIT by comment:
You can try reset_index
first:
print (tmp)
C3 C4 C5 Start End C8
C1 C2
A 1 - - - 12 14 -
2 - - - 1,4,7 3,6,10 -
3 - - - 16,19 17,21 -
4 - - - 22 24 -
tmp.reset_index(inplace=True)
print (tmp)
C1 C2 C3 C4 C5 Start End C8
0 A 1 - - - 12 14 -
1 A 2 - - - 1,4,7 3,6,10 -
2 A 3 - - - 16,19 17,21 -
3 A 4 - - - 22 24 -
回答2:
I concat the expanded 'Start'
and 'End'
columns to ensure they match up even if they don't have the same number of entries.
s = tmp.Start.str.split(',', expand=True).stack().rename('Start')
e = tmp.End.str.split(',', expand=True).stack().rename('End')
se = pd.concat([s, e], axis=1).reset_index(1, drop=True)
tmp.drop(['Start', 'End'], axis=1).merge(se, left_index=True, right_index=True)
来源:https://stackoverflow.com/questions/38402906/split-rows-according-to-text-in-two-columns-python-pandas