Isabelle: Issue with setprod

牧云@^-^@ 提交于 2020-01-01 18:56:08

问题


Does the following equality hold in Isabelle:

setprod f (UNIV :: 'n∷finite set) = setprod (λx. x) (f ` (UNIV :: 'n∷finite set))

If yes, how can I prove it?

(* tested with Isabelle2013-2 *)
theory Notepad
imports
  Main
  "~~/src/HOL/Library/Polynomial"
begin

notepad
begin{
fix f :: "'n∷finite ⇒ ('a::comm_ring_1 poly)"

have "finite (UNIV :: 'n∷finite set)" by simp
from this have "setprod f (UNIV :: 'n∷finite set) = setprod (λx. x) (f ` (UNIV :: 'n∷finite set))" 
sorry (* can this be proven ? *)

回答1:


The lemma holds only if you add the assumption inj f stating that f is injective. The lemma then follows from the library lemma setprod_reindex_id, which can be found using the command find_theorems setprod image.

setprod_reindex_id [unfolded id_def] gives you a generalized version of the lemma you asked for.



来源:https://stackoverflow.com/questions/21178250/isabelle-issue-with-setprod

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!