问题
I am looking for for a fast-SSE-low-precision (~1e-3) exponential function.
I came across this great answer:
/* max. rel. error = 3.55959567e-2 on [-87.33654, 88.72283] */
__m128 FastExpSse (__m128 x)
{
__m128 a = _mm_set1_ps (12102203.0f); /* (1 << 23) / log(2) */
__m128i b = _mm_set1_epi32 (127 * (1 << 23) - 298765);
__m128i t = _mm_add_epi32 (_mm_cvtps_epi32 (_mm_mul_ps (a, x)), b);
return _mm_castsi128_ps (t);
}
Based on the work of Nicol N. Schraudolph: N. N. Schraudolph. "A fast, compact approximation of the exponential function." Neural Computation, 11(4), May 1999, pp.853-862.
Now I would need a "double precision" version: __m128d FastExpSSE (__m128d x)
.
This is because I don't control the input and output precision, which happen to be double precision, and the two conversions double -> float, then float -> double is eating 50% of the CPU resources.
What changes would be needed?
I naively tried this:
__m128i double_to_uint64(__m128d x) {
x = _mm_add_pd(x, _mm_set1_pd(0x0010000000000000));
return _mm_xor_si128(
_mm_castpd_si128(x),
_mm_castpd_si128(_mm_set1_pd(0x0010000000000000))
);
}
__m128d FastExpSseDouble(__m128d x) {
#define S 52
#define C (1llu << S) / log(2)
__m128d a = _mm_set1_pd(C); /* (1 << 52) / log(2) */
__m128i b = _mm_set1_epi64x(127 * (1llu << S) - 298765llu << 29);
auto y = double_to_uint64(_mm_mul_pd(a, x));
__m128i t = _mm_add_epi64(y, b);
return _mm_castsi128_pd(t);
}
Of course this returns garbage as I don't know what I'm doing...
edit:
About the 50% factor, it is a very rough estimation, comparing the speedup (with respect to std::exp) converting a vector of single precision numbers (great) to the speedup with a list of double precision numbers (not so great).
Here is the code I used:
// gives the result in place
void FastExpSseVector(std::vector<double> & v) { //vector with several millions elements
const auto I = v.size();
const auto N = (I / 4) * 4;
for (int n = 0; n < N; n += 4) {
float a[4] = { float(v[n]), float(v[n + 1]), float(v[n + 2]), float(v[n + 3]) };
__m128 x;
x = _mm_load_ps(a);
auto r = FastExpSse(x);
_mm_store_ps(a, r);
v[n] = a[0];
v[n + 1] = a[1];
v[n + 2] = a[2];
v[n + 3] = a[3];
}
for (int n = N; n < I; ++n) {
v[n] = FastExp(v[n]);
}
}
And here is what I would do if I had this "double precision" version:
void FastExpSseVectorDouble(std::vector<double> & v) {
const auto I = v.size();
const auto N = (I / 2) * 2;
for (int n = 0; n < N; n += 2) {
__m128d x;
x = _mm_load_pd(&v[n]);
auto r = FastExpSseDouble(x);
_mm_store_pd(&v[n], r);
}
for (int n = N; n < I; ++n) {
v[n] = FastExp(v[n]);
}
}
回答1:
Something like this should do the job. You need to tune the 1.05
constant to get a lower maximal error -- I'm too lazy to do that:
__m128d fastexp(const __m128d &x)
{
__m128d scaled = _mm_add_pd(_mm_mul_pd(x, _mm_set1_pd(1.0/std::log(2.0)) ), _mm_set1_pd(3*1024.0-1.05));
return _mm_castsi128_pd(_mm_slli_epi64(_mm_castpd_si128(scaled), 11));
}
This just gets about 2.5% relative precision -- for better precision you may need to add a second term.
Also, for values which overflow or underflow this will result in unspecified values, you can avoid this by clamping the scaled
value to some values.
来源:https://stackoverflow.com/questions/50697711/fast-sse-low-precision-exponential-using-double-precision-operations