问题
Consider the code:
x <- read.table("http://data.princeton.edu/wws509/datasets/cuse.dat",
header=TRUE)[,1:2]
fit <- glm(education ~ age, family="binomial", data=x)
summary(fit)
Where age has 4 levels: "<25" "25-29" "30-39" "40-49"
The results are:
So by default, one of the levels is used as a reference level. Is there a way to have glm output coefficients for all 4 levels + the intercept (i.e. have no reference level)? Software packages like SAS do this by default, so I was wondering if there was any option for this.
Thanks!
回答1:
See ?formula
, specifically, the meaning of including + 0
in your model specification...
# Sample data - explanatory variable (continuous)
x <- runif( 100 )
# explanatory data, factor with 3 levels
f <- as.factor( sample( 3 , 100 , TRUE ) )
# outcome data
y <- runif( 100 ) + rnorm(100) + rnorm( 100 , mean = c(1,3,6) )
# model without intercept
summary( glm( y ~ x + f + 0 ) )
#Call:
#glm(formula = y ~ x + f + 0)
#Deviance Residuals:
# Min 1Q Median 3Q Max
#-5.7316 -1.8923 0.0195 1.8918 5.9520
#Coefficients:
# Estimate Std. Error t value Pr(>|t|)
#x 0.3216 0.9772 0.329 0.743
#f1 3.4493 0.6823 5.055 2.06e-06 ***
#f2 3.6349 0.6959 5.223 1.02e-06 ***
#f3 3.1962 0.6598 4.844 4.87e-06 ***
回答2:
You'll want to use the model.matrix
function to convert the factors in the age variable to binary variables.
See this answer.
EDIT: Here is an example:
x <- read.table("http://data.princeton.edu/wws509/datasets/cuse.dat",
header=TRUE)[,1:2]
binary_variables <- model.matrix(~ x$age -1, x)
fit <- glm(x$education ~ binary_variables, family="binomial")
summary(fit)
来源:https://stackoverflow.com/questions/23347467/is-there-any-way-to-fit-a-glm-so-that-all-levels-are-included-i-e-no-refer