问题
I have a pandas
data frame with multiple columns of strings representing dates, with empty strings representing missing dates. For example
import numpy as np
import pandas as pd
# expected date format is 'm/%d/%Y'
custId = np.array(list(range(1,6)))
eventDate = np.array(["06/10/1992","08/24/2012","04/24/2015","","10/14/2009"])
registerDate = np.array(["06/08/2002","08/20/2012","04/20/2015","","10/10/2009"])
# both date columns of dfGood should convert to datetime without error
dfGood = pd.DataFrame({'custId':custId, 'eventDate':eventDate, 'registerDate':registerDate})
I am trying to:
- Efficiently convert columns where all strings are valid dates or empty into columns of type
datetime64
(withNaT
for the empty) - Raise
ValueError
when any non-empty string does not conform to the expected format,
Example of where ValueError
should be raised:
# 2nd string invalid
registerDate = np.array(["06/08/2002","20/08/2012","04/20/2015","","10/10/2009"])
# eventDate column should convert, registerDate column should raise ValueError
dfBad = pd.DataFrame({'custId':custId, 'eventDate':eventDate, 'registerDate':registerDate})
This function does what I want at the element level:
from datetime import datetime
def parseStrToDt(s, format = '%m/%d/%Y'):
"""Parse a string to datetime with the supplied format."""
return pd.NaT if s=='' else datetime.strptime(s, format)
print(parseStrToDt("")) # correctly returns NaT
print(parseStrToDt("12/31/2011")) # correctly returns 2011-12-31 00:00:00
print(parseStrToDt("12/31/11")) # correctly raises ValueError
However, I have read that string operations shouldn't be np.vectorize
-d. I thought this could be done efficiently using pandas.DataFrame.apply
, as in:
dfGood[['eventDate','registerDate']].applymap(lambda s: parseStrToDt(s)) # raises TypeError
dfGood.loc[:,'eventDate'].apply(lambda s: parseStrToDt(s)) # raises same TypeError
I'm guessing that the TypeError
has something to do with my function returning a different dtype
, but I do want to take advantage of dynamic typing and replace the string with a datetime (unless ValueError is raise)... so how can I do this?
回答1:
pandas
doesn't have an option that exactly replicates what you want, here's one way to do it, which should be relatively efficient.
In [4]: dfBad
Out[4]:
custId eventDate registerDate
0 1 06/10/1992 06/08/2002
1 2 08/24/2012 20/08/2012
2 3 04/24/2015 04/20/2015
3 4
4 5 10/14/2009 10/10/2009
In [7]: cols
Out[7]: ['eventDate', 'registerDate']
In [9]: dts = dfBad[cols].apply(lambda x: pd.to_datetime(x, errors='coerce', format='%m/%d/%Y'))
In [10]: dts
Out[10]:
eventDate registerDate
0 1992-06-10 2002-06-08
1 2012-08-24 NaT
2 2015-04-24 2015-04-20
3 NaT NaT
4 2009-10-14 2009-10-10
In [11]: mask = pd.isnull(dts) & (dfBad[cols] != '')
In [12]: mask
Out[12]:
eventDate registerDate
0 False False
1 False True
2 False False
3 False False
4 False False
In [13]: mask.any()
Out[13]:
eventDate False
registerDate True
dtype: bool
In [14]: is_bad = mask.any()
In [23]: if is_bad.any():
...: raise ValueError("bad dates in col(s) {0}".format(is_bad[is_bad].index.tolist()))
...: else:
...: df[cols] = dts
...:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-579c06ce3c77> in <module>()
1 if is_bad.any():
----> 2 raise ValueError("bad dates in col(s) {0}".format(is_bad[is_bad].index.tolist()))
3 else:
4 df[cols] = dts
5
ValueError: bad dates in col(s) ['registerDate']
回答2:
Just to take the accepted answer a little further, I replaced the columns of all valid or missing strings with their parsed datetimes, and then raised an error for the remaining unparsed columns:
dtCols = ['eventDate', 'registerDate']
dts = dfBad[dtCols].apply(lambda x: pd.to_datetime(x, errors='coerce', format='%m/%d/%Y'))
mask = pd.isnull(dts) & (dfBad[dtCols] != '')
colHasError = mask.any()
invalidCols = colHasError[colHasError].index.tolist()
validCols = list(set(dtCols) - set(invalidCols))
dfBad[validCols] = dts[validCols] # replace the completely valid/empty string cols with dates
if colHasError.any():
raise ValueError("bad dates in col(s) {0}".format(invalidCols))
# raises: ValueError: bad dates in col(s) ['registerDate']
print(dfBad) # eventDate got converted, registerDate didn't
The accepted answer contains the main insight, though, which is to go ahead and coerce errors to NaT
and then distinguish the non-empty but invalid strings from the empty ones with the mask.
来源:https://stackoverflow.com/questions/38594246/pandas-convert-string-columns-to-datetime-allowing-missing-but-not-invalid