问题
I have the following system of 3 nonlinear equations that I need to solve:
-xyt + HF = 0
-2xzt + 4yzt - xyt + 4z^2t - M1F = 0
-2xt + 2yt + 4zt - 1 = 0
where x, HF, and M1F are known parameters. Therefore, y,z, and t are the parameters to be calculated.
Attemp to solve the problem:
def equations(p):
y,z,t = p
f1 = -x*y*t + HF
f2 = -2*x*z*t + 4*y*z*t - x*y*t + 4*t*z**2 - M1F
f3 = -2*x*t + 2*y*t + 4*z*t - 1
return (f1,f2,f3)
y,z,t = fsolve(equations)
print equations((y,z,t))
But the thing is that if I want to use scipy.optimize.fsolve
then I should input an initial guess. In my case, I do not have any initial conditions.
Is there another way to solve 3 nonlinear equations with 3 unknowns in python?
Edit:
It turned out that I have a condition! The condition is that HF > M1F, HF > 0, and M1F > 0.
回答1:
@Christian, I don't think the equation system can be linearize easily, unlike the post you suggested.
Powell's Hybrid method (optimize.fsolve()
) is quite sensitive to initial conditions, so it is very useful if you can come up with a good initial parameter guess. In the following example, we firstly minimize the sum-of-squares of all three equations using Nelder-Mead method (optimize.fmin()
, for small problem like OP, this is probably already enough). The resulting parameter vector is then used as the initial guess for optimize.fsolve()
to get the final result.
>>> from numpy import *
>>> from scipy import stats
>>> from scipy import optimize
>>> HF, M1F, x=1000.,900.,10.
>>> def f(p):
return abs(sum(array(equations(p))**2)-0)
>>> optimize.fmin(f, (1.,1.,1.))
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 131
Function evaluations: 239
array([ -8.95023217, 9.45274653, -11.1728963 ])
>>> optimize.fsolve(equations, (-8.95023217, 9.45274653, -11.1728963))
array([ -8.95022376, 9.45273632, -11.17290503])
>>> pr=optimize.fsolve(equations, (-8.95023217, 9.45274653, -11.1728963))
>>> equations(pr)
(-7.9580786405131221e-13, -1.2732925824820995e-10, -5.6843418860808015e-14)
The result is pretty good.
来源:https://stackoverflow.com/questions/20827005/how-to-solve-3-nonlinear-equations-in-python