问题
Since version 3.0, DenseFeatureDetector is no longer available. Could anybody please show me how to compute Dense SIFT features in OpenCV 3.0? I couldn't find it in the documentation.
Thank you very much in advance!
回答1:
Here's how I used dense SIFT in OpenCV 3 C++:
SiftDescriptorExtractor sift;
vector<KeyPoint> keypoints; // keypoint storage
Mat descriptors; // descriptor storage
// manual keypoint grid
int step = 10; // 10 pixels spacing between kp's
for (int y=step; y<img.rows-step; y+=step){
for (int x=step; x<img.cols-step; x+=step){
// x,y,radius
keypoints.push_back(KeyPoint(float(x), float(y), float(step)));
}
}
// compute descriptors
sift.compute(img, keypoints, descriptors);
copied from: http://answers.opencv.org/question/73165/compute-dense-sift-features-in-opencv-30/?answer=73178#post-id-73178
seems to work well
回答2:
You can pass a list of cv2.KeyPoints
to sift.compute
. This example is in Python, but it shows the principle. I create a list of cv2.KeyPoint
s by scanning through the pixel locations of the image:
import skimage.data as skid
import cv2
import pylab as plt
img = skid.lena()
gray= cv2.cvtColor(img ,cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
step_size = 5
kp = [cv2.KeyPoint(x, y, step_size) for y in range(0, gray.shape[0], step_size)
for x in range(0, gray.shape[1], step_size)]
img=cv2.drawKeypoints(gray,kp, img)
plt.figure(figsize=(20,10))
plt.imshow(img)
plt.show()
dense_feat = sift.compute(gray, kp)
来源:https://stackoverflow.com/questions/33120951/compute-dense-sift-features-in-opencv-3-0