问题
In the following script:
import numpy as np
from scipy.optimize import minimise
a=np.array(range(4))
b=np.array(range(4,8))
def sm(x,a,b):
sm=np.zeros(1)
a=a*np.exp(x)
sm += sum(b-a)
return sm
x0=np.zeros(4)
print sm(x0,a,b) #checking my function
opt = minimize(sm,x0,args=(a,b),method='nelder-mead',
options={'xtol': 1e-8, 'disp': True})
I am trying to optimise for x but I am having the following message:
Warning: Maximum number of function evaluations has been exceeded.
And the result is:
array([-524.92769674, 276.6657959 , 185.98604937, 729.5822923 ])
Which is not the optimal. My question is am I having this message and result because my starting points are not correct?
回答1:
Your function sm
appears to be unbounded. As you increase x
, sm
will get ever more negative, hence the fact that it is going to -inf
.
Re: comment - if you want to make sm()
as close to zero as possible, modify the last line in your function definition to read return abs(sm)
.
This minimised the absolute value of the function, bringing it close to zero.
Result for your example:
>>> opt = minimize(sm,x0,args=(a,b),method='nelder-mead', options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 153
Function evaluations: 272
>>> opt
status: 0
nfev: 272
success: True
fun: 2.8573836630130245e-09
x: array([-1.24676625, 0.65786454, 0.44383101, 1.73177358])
message: 'Optimization terminated successfully.'
nit: 153
回答2:
Modifying the proposal of FuzzyDuck, I replace sm +=((b-a)**2) which return me the desired result.
来源:https://stackoverflow.com/questions/29229810/optimisation-using-scipy