问题
I have a 50 years data. I need to choose the combination of 30 years out of it such that the values corresponding to them reach a particular threshold value but the possible number of combination for 50C30
is coming out to be 47129212243960
.
How to calculate it efficiently?
Prs_100
Yrs
2012 425.189729
2013 256.382494
2014 363.309507
2015 578.728535
2016 309.311562
2017 476.388839
2018 441.479570
2019 342.267756
2020 388.133403
2021 405.007245
2022 316.108551
2023 392.193322
2024 296.545395
2025 467.388190
2026 644.588971
2027 301.086631
2028 478.492618
2029 435.868944
2030 467.464995
2031 323.465049
2032 391.201598
2033 548.911349
2034 381.252838
2035 451.175339
2036 281.921215
2037 403.840004
2038 460.514250
2039 409.134409
2040 312.182576
2041 320.246886
2042 290.163454
2043 381.432168
2044 259.228592
2045 393.841815
2046 342.999972
2047 337.491898
2048 486.139010
2049 318.278012
2050 385.919542
2051 309.472316
2052 307.756455
2053 338.596315
2054 322.508536
2055 385.428138
2056 339.379743
2057 420.428529
2058 417.143175
2059 361.643381
2060 459.861622
2061 374.359335
I need only that 30 years combination whose Prs_100
mean value reaches upto a certain threshold , I can then break from calculating further outcomes.On searching SO , I found a particular approach using an apriori
algorithm but couldn't really figure out the values of support in it.
I have used the combinations method of python
list(combinations(dftest.index,30))
but it was not working in this case.
Expected Outcome-
Let's say I found a 30 years set whose Prs_100
mean value is more than 460 , then I'll save that 30 years output as a result and it will be my desired outcome too.
How to do it ?
回答1:
My previous answer was off base so I'm going to try again. From re-reading your question it looks like you are looking for one result of 30 years where the mean of Prs_100 values is greater than 460.
The following code can do this, but when I ran it, I had started having difficulties after about 415 for a mean value.
After running, you get a list of years 'years_list' and a list of values 'Prs_100_list' meeting the criteria of mean > 460 (415 in the example below).
Here is my code, hope this is in the area of what you are looking for.
from math import factorial
import numpy as np
import pandas as pd
from itertools import combinations
import time
# start a timer
start = time.time()
# array of values to work with, corresponding to the years 2012 - 2062
prs_100 = np.array([
425.189729, 256.382494, 363.309507, 578.728535, 309.311562,
476.388839, 441.47957 , 342.267756, 388.133403, 405.007245,
316.108551, 392.193322, 296.545395, 467.38819 , 644.588971,
301.086631, 478.492618, 435.868944, 467.464995, 323.465049,
391.201598, 548.911349, 381.252838, 451.175339, 281.921215,
403.840004, 460.51425 , 409.134409, 312.182576, 320.246886,
290.163454, 381.432168, 259.228592, 393.841815, 342.999972,
337.491898, 486.13901 , 318.278012, 385.919542, 309.472316,
307.756455, 338.596315, 322.508536, 385.428138, 339.379743,
420.428529, 417.143175, 361.643381, 459.861622, 374.359335])
# build dataframe with prs_100 as index and years as values, so that years can be returned easily.
df = pd.DataFrame(list(range(2012, 2062)), index=prs_100, columns=['years'])
df.index.name = 'Prs_100'
# set combination parameters
r = 30
n = len(prs_100)
Prs_100_list = []
years_list = []
count = 0
for p in combinations(prs_100, r):
if np.mean(p) > 391 and np.mean(p) < 400:
Prs_100_list.append(p)
years_list.append(df.loc[p,'years'].values.tolist())
# build in some exit
count += 1
if count > 100:
break
回答2:
You can use numpy's random.choice:
In [11]: df.iloc[np.random.choice(np.arange(len(df)), 3)]
Out[11]:
Prs_100
Yrs
2023 392.193322
2047 337.491898
2026 644.588971
来源:https://stackoverflow.com/questions/54435024/choose-r-outcomes-from-n-possibilities-efficiently-in-pandas