问题
I am wondering how I can compute confidence interval using the broom
package.
What I am trying to do is simple and standard :
set.seed(1)
x <- runif(50)
y <- 2.5 + (3 * x) + rnorm(50, mean = 2.5, sd = 2)
dat <- data.frame(x = x, y = y)
mod <- lm(y ~ x, data = dat)
Using visreg
I can plot regression models with CI
very simply with :
library(visreg)
visreg(mod, 'x', overlay=TRUE)
I am interesting in reproducing this using broom
and ggplot2
, so far I only achieved this :
library(broom)
dt = lm(y ~ x, data = dat) %>% augment(conf.int = TRUE)
ggplot(data = dt, aes(x, y, colour = y)) +
geom_point() + geom_line(data = dt, aes(x, .fitted, colour = .fitted))
The augment
funciton doesn't compute conf.int
. Any clue how I can add some smooth
confidence invervals ?
geom_smooth(data=dt, aes(x, y, ymin=lcl, ymax=ucl), size = 1.5,
colour = "red", se = TRUE, stat = "smooth")
回答1:
Using the broom
output, you can do something like this:
ggplot(data = dt, aes(x, y)) +
geom_ribbon(aes(ymin=.fitted-1.96*.se.fit, ymax=.fitted+1.96*.se.fit), alpha=0.2) +
geom_point(aes(colour = y)) +
geom_line(aes(x, .fitted, colour = .fitted)) +
theme_bw()
I moved colour=y
into geom_point()
because you can't apply a colour aesthetic to geom_ribbon
.
回答2:
Just do this (with your original dataset dat):
ggplot(data = dat, aes(x, y, colour = y)) +
geom_point(size=2) + geom_smooth(method='lm', se = TRUE) + theme_bw()
来源:https://stackoverflow.com/questions/40533201/r-tidy-augment-confidence-interval