3 负环及其应用
3.1 判定算法
判断负环只能用“边松弛”算法,也就是Bellman-Ford和SPFA算法。这两个算法都是\(O(NM)\)级别的。因为负环中一定存在一条负边,使得\(dis_i > dis_j+d(i,j)\)恒成立。因此,在用边松弛算法时,如果一条边被松弛超过一定次数,我们就可以判定图中存在负环。负环则代表环上的边权和小于0。在负环上走若干圈,则\(dis_i\)可以趋近\(-\infty\)。
Bellman-Ford算法
如果经过\(n\)轮迭代后,仍然有边可以被更新,则图中存在负环。
否则,如果在\(n-1\)轮迭代后,如果不能更新任何一条边,则图中不存在负环。
SPFA算法
设\(|\Gamma_i|\)表示从源点到\(i\)的最短路包含的边数。规定\(|\Gamma_S|=0\)。当转移\(dis_y = dis_x + d(x,y)\)成立时,我们同时令\(|\Gamma_y| = |\Gamma_x| + 1\)。在任意时刻,如果有\(|\Gamma_y| \geq n\),则图中有负环。
我们也可以用入队次数来判断。如果一个节点被入队\(n\)次以上,则图中存在负环。
当然,前面也介绍过一种基于DFS的SPFA判断负环的方法。这种方法速度较快,但是比较专一。在计算最短路时,效率远不如基于队列的SPFA。
3.2 应用
其实比较灵活。只介绍一些比较简单的应用
图上二分
极少数题目会出现。由于本人做题不多,这里只能给出一道例题:HNOI2009 最小圈。
由于答案具有单调性——即不存在小于答案的平均值,而一定存在大于等于答案的平均值,我们可以二分求出最小值。设这个平均值为\(\bar{w}\),那么根据平均值的性质,对于环上的边\(w_i\),有\(\sum_{i=1}^{0}(w_i-\bar{w})=0\)。我们二分这个平均值\(\bar{w}\),然后把每条边的边权设置为\(w_i-\bar{w}\)。如果图中存在一个负环,说明当前平均值合法,可以进一步缩小。时间复杂度可以看作\(\Omega(m\log W)\)。当然,最坏情况还是\(O(nm\log W)\)的。其中\(W\)表示边权的上下界之差。
差分约束系统
是一种特殊的\(N\)元一次不等式组。其中每一个不等式都形如\(X_i - X_j \leq c_k\)。通过移项,我们可以得到一个不等式:\(X_i \leq X_j + c_k\)。这个不等式酷似我们之前所讲到的三角形不等式。我们的目标就是求出一组\(X_i\)使得每一个三角形不等式成立。对于\(X_i - X_j \geq c_k\)的不等式,可以转换为\(X_j - X_i \leq -c_k\)的形式解决。
注意到如果\(\{X_i\}\)是一组解,那么通过加上一个常数\(c\),我们可以得到另一组解\(\{X_i+c\}\)。我们不妨假定每一个变量都是负数或0,设\(X_0 = 0\),令\(X_i \leq 0\),则\(X_i - X_0 \leq 0\)。我们由\(X_0\)向所有点连一条边权为0的边,然后对于所有\(X_i - X_j \leq c_k\)的边,我们往\(j\)从\(i\)连一条边。这时,\(X_i\)的实际意义就是从\(0\)点到\(i\)点的最短距离。用最短路算法就可以求出一组负数解。
当构造出来的图中存在负环,\(X_i\)会被不断更新:说明\(X_i\)的值始终无法满足每个不等式。此时这个差分约束系统无解。由于既要求出最短路,又要判断负环,这里应该使用SPFA。