问题
lets say i have an expression:
(n)+((n-1)*2)+((n-2)*3)+((n-3)*4)+...+(3*(n-2))+(2*(n-1))+(1*(n))
what is the tight bound of this? or the upper bound? is this n^3? is this n^4? the maximum amount of number i can get out of this? thanks
EDIT: so: for i=1 then: the ans is 1.
i=2: (1*2 + 2*1) 1=3: (1*3 + 2*2 + 3*1) i=4: (1*4 + 2*3 + 3*2 + 4*1 )
and so on
回答1:
Try Wolfram Alpha ...
Sum[(i + 1) (n - i), {i, 0, n - 1}]
来源:https://stackoverflow.com/questions/4382014/i-need-to-find-the-upper-bound-of-this-or-the-tight-bound