问题
The IDEA cipher uses multiplication modulo 2^16 + 1
. Is there an algorithm to perform this operation without general modulo operator (only modulo 2^16
(truncation))? In the context of IDEA, zero is interpreted as 2^16
(it means zero isn't an argument of our multiplication and it cannot be the result, so we can save one bit and store value 2^16
as bit pattern 0000000000000000
). I am wondering how to implement it efficiently (or whether it is possible at all) without using the standard modulo operator.
回答1:
You can utilize the fact, that (N-1) % N == -1.
Thus, (65536 * a) % 65537 == -a % 65537.
Also, -a % 65537 == -a + 1 (mod 65536), when 0 is interpreted as 65536
uint16_t fastmod65537(uint16_t a, uint16_t b)
{
uint32_t c;
uint16_t hi, lo;
if (a == 0)
return -b + 1;
if (b == 0)
return -a + 1;
c = (uint32_t)a * (uint32_t)b;
hi = c >> 16;
lo = c;
if (lo > hi)
return lo-hi;
return lo-hi+1;
}
The only problem here is if hi == lo
, the result would be 0. Luckily a test suite confirms, that it actually can't be...
int main()
{
uint64_t a, b;
for (a = 1; a <= 65536; a++)
for (b = 1; b <= 65536; b++)
{
uint64_t c = a*b;
uint32_t d = (c % 65537) & 65535;
uint32_t e = m(a & 65535, b & 65535);
if (d != e)
printf("a * b % 65537 != m(%d, %d) real=%d m()=%d\n",
(uint32_t)a, (uint32_t)b, d, e);
}
}
Output: none
回答2:
First, the case where either a
or b
is zero. In that case, it is interpreted as having the value 2^16, therefore elementary modulo arithmetic tells us that:
result = -a - b + 1;
, because (in the context of IDEA) the multiplicative inverse of 2^16 is still 2^16, and its lowest 16 bits are all zeroes.
The general case is much easier than it seems, now that we took care of the "0" special case (2^16+1 is 0x10001):
/* This operation can overflow: */
unsigned result = (product & 0xFFFF) - (product >> 16);
/* ..so account for cases of overflow: */
result -= result >> 16;
Putting it together:
/* All types must be sufficiently wide unsigned, e.g. uint32_t: */
unsigned long long product = a * b;
if (product == 0) {
return -a - b + 1;
} else {
result = (product & 0xFFFF) - (product >> 16);
result -= result >> 16;
return result & 0xFFFF;
}
来源:https://stackoverflow.com/questions/28939351/fast-multiplication-modulo-216-1