I am trying to insert missing weekdays in a time series dataframe such has
import pandas as pd
from pandas.tseries.offsets import *
df = pd.DataFrame([['2016-09-30', 10, 2020], ['2016-10-03', 20, 2424], ['2016-10-05', 5, 232]], columns=['date', 'price', 'vol']).set_index('date')
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
data looks like this :
Out[300]:
price vol
date
2016-09-30 10 2020
2016-10-03 20 2424
2016-10-05 5 232
I can create a series of week days easily with pd.date_range()
pd.date_range('2016-09-30', '2016-10-05', freq=BDay())
Out[301]: DatetimeIndex(['2016-09-30', '2016-10-03', '2016-10-04', '2016-10-05'], dtype='datetime64[ns]', freq='B')
based on that DateTimeIndex I would like to add missing dates in my df
and fill column values with NaN so I get:
Out[300]:
price vol
date
2016-09-30 10 2020
2016-10-03 20 2424
2016-10-04 NaN NaN
2016-10-05 5 232
is there an easy way to do this? Thanks!
You can use reindex:
df.index = pd.to_datetime(df.index)
df.reindex(pd.date_range('2016-09-30', '2016-10-05', freq=BDay()))
Out:
price vol
2016-09-30 10.0 2020.0
2016-10-03 20.0 2424.0
2016-10-04 NaN NaN
2016-10-05 5.0 232.0
Alternatively, you can use pandas.DataFrame.resample(), specifying 'B' for Business Day with no need to specify beginning or end date sequence as along as the dataframe maintains a datetime index
df = df.resample('B').sum()
# price vol
# date
# 2016-09-30 10.0 2020.0
# 2016-10-03 20.0 2424.0
# 2016-10-04 NaN NaN
# 2016-10-05 5.0 232.0
来源:https://stackoverflow.com/questions/39877184/insert-missing-weekdays-in-pandas-dataframe-and-fill-them-with-nan