Pandas - Using `.rolling()` on multiple columns

老子叫甜甜 提交于 2019-12-06 14:08:57

One solution is to stack the data and then multiply your window size by the number of columns and slice the result by the number of columns. Also, since you want a forward looking window, reverse the order of the stacked DataFrame

wsize = 3
cols = len(df.columns)

df.stack(dropna=False)[::-1].rolling(window=wsize*cols).quantile(0.75)[cols-1::cols].reset_index(-1, drop=True).sort_index()

Output:

0    1.12
1    0.97
2    0.97
3     NaN
4     NaN
dtype: float64

In the case of many columns and a small window:

import pandas as pd
import numpy as np

wsize = 3
df2 = pd.concat([df.shift(-x) for x in range(wsize)], 1)
s_quant = df2.quantile(0.75, 1)

# Only necessary if you need to enforce sufficient data. 
s_quant[df2.isnull().any(1)] = np.NaN

Output: s_quant

0    1.12
1    0.97
2    0.97
3     NaN
4     NaN
Name: 0.75, dtype: float64

You can use numpy ravel. Still you may have to use for loops.

for i in range(0,3):
    print(df.iloc[i:i+3].values.ravel())

If your t steps in 3s, you can use numpy reshape function to create a n*9 dataframe.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!