问题
I'm new to tensorflow, but i already followed and executed the tutorials they promote and many others all over the web. I made a little convolutional neural network over the MNIST images. Nothing special, but i would like to test on my own images. Now my problem comes: I created several folders; the name of each folder is the class (label) the images inside belong.
The images have different shapes; i mean they have no fixed size.
How can i load them for using with Tensorflow?
I followed many tutorials and answers both here on StackOverflow and on others Q/A sites. But still, i did not figure out how to do this.
回答1:
The tf.data
API (tensorflow 1.4 onwards) is great for things like this. The pipeline will looks something like the following:
- Create an initial
tf.data.Dataset
object that iterates over all examples - (if training)
shuffle
/repeat
the dataset; map
it through some function that makes all images the same size;batch
;- (optionall)
prefetch
to tell your program to collect the preprocess subsequent batches of data while the network is processing the current batch; and - and get inputs.
There are a number of ways of creating your initial dataset (see here for a more in depth answer)
TFRecords with Tensorflow Datasets
Supporting tensorflow version 1.12 onwards, Tensorflow datasets provides a relatively straight-forward API for creating tfrecord datasets, and also handles data downloading, sharding, statistics generation and other functionality automatically.
See e.g. this image classification dataset implementation. There's a lot of bookeeping stuff in there (download urls, citations etc), but the technical part boils down to specifying features
and writing a _generate_examples
function
features = tfds.features.FeaturesDict({
"image": tfds.features.Image(shape=(_TILES_SIZE,) * 2 + (3,)),
"label": tfds.features.ClassLabel(
names=_CLASS_NAMES),
"filename": tfds.features.Text(),
})
...
def _generate_examples(self, root_dir):
root_dir = os.path.join(root_dir, _TILES_SUBDIR)
for i, class_name in enumerate(_CLASS_NAMES):
class_dir = os.path.join(root_dir, _class_subdir(i, class_name))
fns = tf.io.gfile.listdir(class_dir)
for fn in sorted(fns):
image = _load_tif(os.path.join(class_dir, fn))
yield {
"image": image,
"label": class_name,
"filename": fn,
}
You can also generate the tfrecords
using lower level operations.
Load images via tf.data.Dataset.map
and tf.py_func(tion)
Alternatively you can load the image files from filenames inside tf.data.Dataset.map
as below.
image_paths, labels = load_base_data(...)
epoch_size = len(image_paths)
image_paths = tf.convert_to_tensor(image_paths, dtype=tf.string)
labels = tf.convert_to_tensor(labels)
dataset = tf.data.Dataset.from_tensor_slices((image_paths, labels))
if mode == 'train':
dataset = dataset.repeat().shuffle(epoch_size)
def map_fn(path, label):
# path/label represent values for a single example
image = tf.image.decode_jpeg(tf.read_file(path))
# some mapping to constant size - be careful with distorting aspec ratios
image = tf.image.resize_images(out_shape)
# color normalization - just an example
image = tf.to_float(image) * (2. / 255) - 1
return image, label
# num_parallel_calls > 1 induces intra-batch shuffling
dataset = dataset.map(map_fn, num_parallel_calls=8)
dataset = dataset.batch(batch_size)
# try one of the following
dataset = dataset.prefetch(1)
# dataset = dataset.apply(
# tf.contrib.data.prefetch_to_device('/gpu:0'))
images, labels = dataset.make_one_shot_iterator().get_next()
I've never worked in a distributed environment, but I've never noticed a performance hit from using this approach over tfrecords
. If you need more custom loading functions, also check out tf.py_func.
More general information here, and notes on performance here
回答2:
Sample input pipeline script to load images and labels from directory. You could do preprocessing(resizing images etc.,) after this.
import tensorflow as tf
filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once("/home/xxx/Desktop/stackoverflow/images/*/*.png"))
image_reader = tf.WholeFileReader()
key, image_file = image_reader.read(filename_queue)
S = tf.string_split([key],'/')
length = tf.cast(S.dense_shape[1],tf.int32)
# adjust constant value corresponding to your paths if you face issues. It should work for above format.
label = S.values[length-tf.constant(2,dtype=tf.int32)]
label = tf.string_to_number(label,out_type=tf.int32)
image = tf.image.decode_png(image_file)
# Start a new session to show example output.
with tf.Session() as sess:
# Required to get the filename matching to run.
tf.initialize_all_variables().run()
# Coordinate the loading of image files.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in xrange(6):
# Get an image tensor and print its value.
key_val,label_val,image_tensor = sess.run([key,label,image])
print(image_tensor.shape)
print(key_val)
print(label_val)
# Finish off the filename queue coordinator.
coord.request_stop()
coord.join(threads)
File Directory
./images/1/1.png
./images/1/2.png
./images/3/1.png
./images/3/2.png
./images/2/1.png
./images/2/2.png
Output:
(881, 2079, 3)
/home/xxxx/Desktop/stackoverflow/images/3/1.png
3
(155, 2552, 3)
/home/xxxx/Desktop/stackoverflow/images/2/1.png
2
(562, 1978, 3)
/home/xxxx/Desktop/stackoverflow/images/3/2.png
3
(291, 2558, 3)
/home/xxxx/Desktop/stackoverflow/images/1/1.png
1
(157, 2554, 3)
/home/xxxx/Desktop/stackoverflow/images/1/2.png
1
(866, 936, 3)
/home/xxxx/Desktop/stackoverflow/images/2/2.png
2
来源:https://stackoverflow.com/questions/44416764/loading-folders-of-images-in-tensorflow