P3374 【模板】树状数组 1
题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某一个数加上x
2.求出某区间每一个数的和
输入格式
第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3个整数,表示一个操作,具体如下:
操作1: 格式:1 x k 含义:将第x个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式
输出包含若干行整数,即为所有操作2的结果。
输入输出样例
输入 #1
5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4
输出 #1
14
16
说明/提示
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
故输出结果14、16
【思路】
之前做过现在是拿出来复习一下,没想到由于太久不写导致生疏到什么东西都忘掉了。。
只能重学树状数组
详细的讲解很多题解和博客都写得很好了,
所以我只在这里说一下易错或者难懂的地方
【题目大意】
单点修改,区间查询
【树状数组复杂度】
树状数组的查询和修改的复杂度都是最坏情况nlogn
比线段树要少而且比普通数组要好写
【什么是lowbit】
lowbit求的是这个数在二进制的情况下最低位的1表示的数
比如6:
先转化为二进制—— 110
最低位的1表示的数就是10,
转化为十进制就是2
【lowbit有什么用】
知道了一个数的lowbit这个数修改之后会影响的数是哪一个
感性理解一下就好
还是比如6:
lowbit(6) = 2,
所以修改了6之后会影响的下一个数就是6 + 2 = 8
然后8在继续影响8 + lowbit(8) 之后的数
直达到达n
【求1-i的值】
也就是下面代码中sum函数的作用
求出1-i的值
因为a[i]代表的不一定是i位置的数
还有可能是和前面的某些数数加起来的和
所以要不重复的找出1-i中的某些a[i]
使他们代表的数刚好是不重复而且不少的出现1-i中的每一个数
减去lowbit就是跳过那些它包括的数
感性理解一下就好
【完整代码】
#include<iostream> #include<cstdio> #define int long long using namespace std; int read() { int sum = 0,fg = 1; char c = getchar(); while(c < '0' || c > '9'){if(c == '-')fg = -1;c = getchar();} while(c >= '0' && c <= '9'){sum = sum * 10 + c - '0';c = getchar();} return sum * fg; } const int Max = 500005; int a[Max]; int n,m; int lowbit(int x) { return x & -x; } void add(int x,int y) { while(x <= n) { a[x] += y; x += lowbit(x); } } int sum(int x) { int ans = 0; while(x > 0) { ans += a[x]; x -= lowbit(x); } return ans; } signed main() { n = read(),m = read(); for(register int i = 1;i <= n;++ i) { int qwq = read(); add(i,qwq); } for(register int i = 1;i <= m;++ i) { int x = read(),y = read(),z = read(); if(x == 1) add(y,z); else cout << sum(z) - sum(y - 1) << endl; } return 0; }