Efficient extraction of all sub-polygons generated by self-intersecting features in a MultiPolygon

≡放荡痞女 提交于 2019-12-03 01:19:06

This has now been implemented in R package sf as the default result when st_intersection is called with a single argument (sf or sfc), see https://r-spatial.github.io/sf/reference/geos_binary_ops.html for the examples. (I'm not sure the origins field contains useful indexes; ideally they should point to indexes in x only, right now they kind of self-refer).

Input

I modify the mock-up data a bit in order to illustrate the ability to deal with multiple attributes.

library(tibble)
library(dplyr)
library(sf)

ncircles <- 9
rmax     <- 120
x_limits <- c(-70,70)
y_limits <- c(-30,30)
set.seed(100) 
xy <- data.frame(
  id = paste0("id_", 1:ncircles), 
  val = paste0("val_", 1:ncircles),
  x = runif(ncircles, min(x_limits), max(x_limits)),
  y = runif(ncircles, min(y_limits), max(y_limits)),
  stringsAsFactors = FALSE) %>% 
  as_tibble()

polys <- st_as_sf(xy, coords = c(3,4)) %>% 
  st_buffer(runif(ncircles, min = 1, max = 20)) 
plot(polys[1])

Basic Operation

Then define the following two functions.

  • cur: the current index of the base polygon
  • x: the index of polygons, which intersects with cur
  • input_polys: the simple feature of the polygons
  • keep_columns: the vector of names of attributes needed to keep after the geometric calculation

get_difference_region() get the difference between the base polygon and other intersected polygons; get_intersection_region() get the intersections among the intersected polygons.

library(stringr)
get_difference_region <- function(cur, x, input_polys, keep_columns=c("id")){
  x <- x[!x==cur] # remove self 
  len <- length(x)
  input_poly_sfc <- st_geometry(input_polys)
  input_poly_attr <- as.data.frame(as.data.frame(input_polys)[, keep_columns])

  # base poly
  res_poly <- input_poly_sfc[[cur]]
  res_attr <- input_poly_attr[cur, ]

  # substract the intersection parts from base poly
  if(len > 0){
    for(i in 1:len){
      res_poly <- st_difference(res_poly, input_poly_sfc[[x[i]]])
    }
  }
  return(cbind(res_attr, data.frame(geom=st_as_text(res_poly))))
}


get_intersection_region <- function(cur, x, input_polys, keep_columns=c("id"), sep="&"){
  x <- x[!x<=cur] # remove self and remove duplicated obj 
  len <- length(x)
  input_poly_sfc <- st_geometry(input_polys)
  input_poly_attr <- as.data.frame(as.data.frame(input_polys)[, keep_columns])

  res_df <- data.frame()
  if(len > 0){
    for(i in 1:len){
      res_poly <- st_intersection(input_poly_sfc[[cur]], input_poly_sfc[[x[i]]])
      res_attr <- list()
      for(j in 1:length(keep_columns)){
        pred_attr <- str_split(input_poly_attr[cur, j], sep, simplify = TRUE)
        next_attr <- str_split(input_poly_attr[x[i], j], sep, simplify = TRUE)
        res_attr[[j]] <- paste(sort(unique(c(pred_attr, next_attr))), collapse=sep)
      }
      res_attr <- as.data.frame(res_attr)
      colnames(res_attr) <- keep_columns
      res_df <- rbind(res_df, cbind(res_attr, data.frame(geom=st_as_text(res_poly))))
    }
  }
  return(res_df)
}

First Level

Difference

Let's see the difference function effect on the mock-up data.

flag <- st_intersects(polys, polys)

first_diff <- data.frame()
for(i in 1:length(flag)) {
  cur_df <- get_difference_region(i, flag[[i]], polys, keep_column = c("id", "val"))
  first_diff <- rbind(first_diff, cur_df)
}
first_diff_sf <- st_as_sf(first_diff, wkt="geom")
first_diff_sf
plot(first_diff_sf[1])

Intersection

first_inter <- data.frame()
for(i in 1:length(flag)) {
  cur_df <- get_intersection_region(i, flag[[i]], polys, keep_column=c("id", "val"))
  first_inter <- rbind(first_inter, cur_df)
}
first_inter <- first_inter[row.names(first_inter %>% select(-geom) %>% distinct()),]
first_inter_sf <- st_as_sf(first_inter, wkt="geom")
first_inter_sf
plot(first_inter_sf[1])

Second Level

use the intersection of first level as input, and repeat the same process.

Difference

flag <- st_intersects(first_inter_sf, first_inter_sf)
# Second level difference region
second_diff <- data.frame()
for(i in 1:length(flag)) {
  cur_df <- get_difference_region(i, flag[[i]], first_inter_sf, keep_column = c("id", "val"))
  second_diff <- rbind(second_diff, cur_df)
}
second_diff_sf <- st_as_sf(second_diff, wkt="geom")
second_diff_sf
plot(second_diff_sf[1])

Intersection

second_inter <- data.frame()
for(i in 1:length(flag)) {
  cur_df <- get_intersection_region(i, flag[[i]], first_inter_sf, keep_column=c("id", "val"))
  second_inter <- rbind(second_inter, cur_df)
}
second_inter <- second_inter[row.names(second_inter %>% select(-geom) %>% distinct()),]  # remove duplicated shape
second_inter_sf <- st_as_sf(second_inter, wkt="geom")
second_inter_sf
plot(second_inter_sf[1])

Get the distinct intersections of the second level, and use them as the input of the third level. We could get that the intersection results of the third level is NULL, then the process should end.

Summary

We put all the difference results into close list, and put all the intersection results into open list. Then we have:

  • When open list is empty, we stop the process
  • The results is close list

Therefore, we get the final code here (the basic two functions should be declared):

# init
close_df <- data.frame()
open_sf <- polys

# main loop
while(!is.null(open_sf)) {
  flag <- st_intersects(open_sf, open_sf)
  for(i in 1:length(flag)) {
    cur_df <- get_difference_region(i, flag[[i]], open_sf, keep_column = c("id", "val"))
    close_df <- rbind(close_df, cur_df)
  }
  cur_open <- data.frame()
  for(i in 1:length(flag)) {
    cur_df <- get_intersection_region(i, flag[[i]], open_sf, keep_column = c("id", "val"))
    cur_open <- rbind(cur_open, cur_df)
  }
  if(nrow(cur_open) != 0) {
    cur_open <- cur_open[row.names(cur_open %>% select(-geom) %>% distinct()),]
    open_sf <- st_as_sf(cur_open, wkt="geom")
  }
  else{
    open_sf <- NULL
  }
}

close_sf <- st_as_sf(close_df, wkt="geom")
close_sf
plot(close_sf[1])

Not sure if it helps you since it is not in R but I think there is a good way to solve this problem using Python. There is a library called GeoPandas (http://geopandas.org/index.html) which has allows you to easily do geo operations. In steps what you would need to do is the following:

  1. Load all Polygons into geopandas GeoDataFrames
  2. Loop all GeoDataFrames running a union overlay operation (http://geopandas.org/set_operations.html)

The exact example is shown in the documentation.

Before operation - 2 Polygons

After operation - 9 Polygons

If there is anything unclear feel free to let me know! Hope it helps!

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!