efficient way to handle 2d line segments

与世无争的帅哥 提交于 2019-12-03 01:13:52

Theoretically searching for the nearest Segments should be possible using any kind of spatial index or space partitioning data structure. Most often the interface of such spatial index allows to store Boxes (AABBs) or Points so in these cases you'd be forced to store bounding Boxes of Segments and then after querying for the closest Boxes check again the corresponding Segments. However it's possible to index Segments directly. E.g. in case of kd-tree it would be a version containing internal nodes defining splitting planes and leafs storing segments.

Boost.Geometry R-tree supports Segments in Boost version 1.56.0 and above. Below is the example for 2d segments using this spatial index implementation:

// Required headers
#include <iostream>
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/geometry/geometries/segment.hpp>
#include <boost/geometry/index/rtree.hpp>

// Convenient namespaces
namespace bg = boost::geometry;
namespace bgm = boost::geometry::model;
namespace bgi = boost::geometry::index;

// Convenient types
typedef bgm::point<double, 2, bg::cs::cartesian> point;
typedef bgm::segment<point> segment;
typedef std::pair<segment, size_t> value;
typedef bgi::rtree<value, bgi::rstar<16> > rtree;

// Function object needed to filter the same segment in query()
// Note that in C++11 you could pass a lambda expression instead
struct different_id
{
    different_id(size_t i) : id(i) {}
    bool operator()(value const& v) const { return v.second != id; }
    size_t id;
};

int main()
{
    // The container for pairs of segments and IDs
    std::vector<value> segments;
    // Fill the container
    for ( size_t i = 0 ; i < 10 ; ++i )
    {
        // Example segment
        segment seg(point(i, i), point(i+1, i+1));
        segments.push_back(std::make_pair(seg, i));
    }

    // Create the rtree
    rtree rt(segments.begin(), segments.end());
    // The number of closest segments
    size_t k = 3;

    // The container for results
    std::vector< std::vector<value> > closest(segments.size());

    for ( size_t i = 0 ; i < segments.size() ; ++i )
    {
        // Find k segments nearest to the i-th segment not including i-th segment
        rt.query(bgi::nearest(segments[i].first, k) && bgi::satisfies(different_id(i)),
                 std::back_inserter(closest[i]));
    }

    // Print the results
    for ( size_t i = 0 ; i < closest.size() ; ++i )
    {
        std::cout << "Segments closest to the segment " << i << " are:" << std::endl;
        for ( size_t j = 0 ; j < closest[i].size() ; ++j )
            std::cout << closest[i][j].second << ' ';
        std::cout << std::endl;
    }
}

In case you needed ALL of the Segments that are closer than some threshold you could use iterative queries (example).

Yes, R-trees can do this. They are designed for arbitrary objects with spatial extend, not limited to point data. Actually some of the earliest examples used polygons.

Have you tried using them?

Build a segment Voronoi diagram, then take proximity candidates from neighbouring cells.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!