Normally from aov()
you can get residuals after using summary()
function on it.
But how can I get residuals when I use Repeated measures ANOVA and formula is different?
## as a test, not particularly sensible statistically
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
npk.aovE
summary(npk.aovE)
Error: block
Df Sum Sq Mean Sq F value Pr(>F)
N:P:K 1 37.0 37.00 0.483 0.525
Residuals 4 306.3 76.57
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
N 1 189.28 189.28 12.259 0.00437 **
P 1 8.40 8.40 0.544 0.47490
K 1 95.20 95.20 6.166 0.02880 *
N:P 1 21.28 21.28 1.378 0.26317
N:K 1 33.14 33.14 2.146 0.16865
P:K 1 0.48 0.48 0.031 0.86275
Residuals 12 185.29 15.44
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Intuitial summary(npk.aovE)$residuals
return NULL
..
Can anyone can help me with this?
Look at the output of
> names(npk.aovE)
and try
> npk.aovE$residuals
EDIT: I apologize I read your example way too quickly. What I suggested is not possible with multilevel models with aov(). Try the following:
> npk.pr <- proj(npk.aovE)
> npk.pr[[3]][, "Residuals"]
Here's a simpler reproducible anyone can mess around with if they run into the same issue:
x1 <- gl(8, 4)
block <- gl(2, 16)
y <- as.numeric(x1) + rnorm(length(x1))
d <- data.frame(block, x1, y)
m <- aov(y ~ x1 + Error(block), d)
m.pr <- proj(m)
m.pr[[3]][, "Residuals"]
The other option is with lme:
require(MASS) ## for oats data set
require(nlme) ## for lme()
require(multcomp) ## for multiple comparison stuff
Aov.mod <- aov(Y ~ N * V + Error(B/V), data = oats)
the_residuals <- aov.out.pr[[3]][, "Residuals"]
Lme.mod <- lme(Y ~ N * V, random = ~1 | B/V, data = oats)
the_residuals <- residuals(Lme.mod)
The original example came without the interaction (Lme.mod <- lme(Y ~ N * V, random = ~1 | B/V, data = oats)
) but it seems to be working with it (and producing different results, so it is doing something).
And that's it...
...but for completeness:
1 - The summaries of the model
summary(Aov.mod)
anova(Lme.mod)
2 - The Tukey test with repeated measures anova (3 hours looking for this!!). It does raises a warning when there is an interaction (*
instead of +
), but it seems to be safe to ignore it. Notice that V
and N
are factors inside the formula.
summary(Lme.mod)
summary(glht(Lme.mod, linfct=mcp(V="Tukey")))
summary(glht(Lme.mod, linfct=mcp(N="Tukey")))
3 - The normality and homoscedasticity plots
par(mfrow=c(1,2)) #add room for the rotated labels
aov.out.pr <- proj(aov.mod)
#oats$resi <- aov.out.pr[[3]][, "Residuals"]
oats$resi <- residuals(Lme.mod)
qqnorm(oats$resi, main="Normal Q-Q") # A quantile normal plot - good for checking normality
qqline(oats$resi)
boxplot(resi ~ interaction(N,V), main="Homoscedasticity",
xlab = "Code Categories", ylab = "Residuals", border = "white",
data=oats)
points(resi ~ interaction(N,V), pch = 1,
main="Homoscedasticity", data=oats)
来源:https://stackoverflow.com/questions/26169153/how-to-get-residuals-from-repeated-measures-anova-model-in-r